Skip to main content
Top

2024 | OriginalPaper | Chapter

Development and Modal Characterization of a Scaled Underwater Kite Wing

Authors : Carson M. McGuire, Matthew Bryant

Published in: Special Topics in Structural Dynamics & Experimental Techniques, Vol. 5

Publisher: Springer Nature Switzerland

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This chapter presents the development and modal characterization of a compliant wing for an underwater marine hydrokinetic (MHK) kite. MHK kites are systems engineered to efficiently harness current and tidal energy from bodies of water, employing cross-current flight patterns to augment velocity and, thus, power production. Given the substantial fluid dynamic loading that MHK kites undergo, which scales with the square of the apparent flow speed at the kite, comprehensive structural analysis is critical for the success of the system design. The speed-dependent loading of the wing can result in wing bending and twisting, which alters the flight dynamics of the kite and requires adaptive control strategies to maintain performance across all flow regimes. The previous North Carolina State University (NCSU) MHK scaled experimental vehicle features a rigid wing, fabricated using aluminum ribs and spars and carbon-fiber laminate skin, which does not appreciably flex during underwater flight. However, when sized for full-scale deployment, MHK kite wings typically cannot remain rigid without excessive internal structural material resulting in high vehicle weight, or without decreasing the wing aspect ratio, which negatively impacts kite performance. To observe and demonstrate wing flexure and twist under small-scale experimental flight conditions, a new compliant wing is devised and built, making use of a foam core and a thin fiberglass skin. To integrate with the NCSU experimental vehicle, the wing is fabricated as two individual left- and right-hand mirrored halves and is approximately of the same wingspan of 0.842 meter. The damped natural frequency of the first bending mode of one compliant half-wing is measured using a laser Doppler vibrometer, and the wing’s effective elasticity modulus was identified. The characterized compliant wing was then simulated in the dynamic model of a small-scale MHK kite and was predicted to experience a maximum tip deflection of 4.05% of the kite wingspan during cross-current flight. Such modeling could prove useful for optimal kite flight controller tuning and appropriate design of the kite wing for structural fatigue life considerations and efficient material usage.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Haas, K.A., Fritz, H.M., French, S.P., Smith, B.T., Neary, V.: Assessment of energy production potential from tidal streams in the United States. Georgia Tech Research Corporation (2011) Haas, K.A., Fritz, H.M., French, S.P., Smith, B.T., Neary, V.: Assessment of energy production potential from tidal streams in the United States. Georgia Tech Research Corporation (2011)
2.
go back to reference Haas, K.A., Fritz, H.M., French, S.P., Neary, V.: Assessment of energy production potential from ocean currents along the United States coastline. Georgia Tech Research Corporation (2013) Haas, K.A., Fritz, H.M., French, S.P., Neary, V.: Assessment of energy production potential from ocean currents along the United States coastline. Georgia Tech Research Corporation (2013)
3.
go back to reference Abney, A., Reed, J., Naik, K., Bryant, S., Herbert, D., Leonard, Z., Vadlamannati, A., Mook, M., Beknalkar, S., Alvarez, M., et al.: Autonomous closed-loop experimental characterization and dynamic model validation of a scaled underwater kite. J. Dyn. Syst. Measur. Control 144(7), 071005 (2022)CrossRef Abney, A., Reed, J., Naik, K., Bryant, S., Herbert, D., Leonard, Z., Vadlamannati, A., Mook, M., Beknalkar, S., Alvarez, M., et al.: Autonomous closed-loop experimental characterization and dynamic model validation of a scaled underwater kite. J. Dyn. Syst. Measur. Control 144(7), 071005 (2022)CrossRef
5.
go back to reference LiVecchi, A., Copping, A., Jenne, D., Gorton, A., Preus, R., Gill, G., Robichaud, R., Green, R., Geerlofs, S., Gore, S., Hume, D., McShane, W., Schmaus, C., Spence, H.: Powering the blue economy: Exploring opportunities for marine renewable energy in maritime markets. U.S. Department of Energy (2019) LiVecchi, A., Copping, A., Jenne, D., Gorton, A., Preus, R., Gill, G., Robichaud, R., Green, R., Geerlofs, S., Gore, S., Hume, D., McShane, W., Schmaus, C., Spence, H.: Powering the blue economy: Exploring opportunities for marine renewable energy in maritime markets. U.S. Department of Energy (2019)
6.
go back to reference Zeng, X., He, R.: Gulf Stream variability and a triggering mechanism of its meander in the South Atlantic Bight. J. Geophys. Res. Oceans 121, 8021–8038 (2016)CrossRef Zeng, X., He, R.: Gulf Stream variability and a triggering mechanism of its meander in the South Atlantic Bight. J. Geophys. Res. Oceans 121, 8021–8038 (2016)CrossRef
10.
go back to reference Anderson, J.D.: Fundamentals of Aerodynamics. McGraw-Hill, New York (2011) Anderson, J.D.: Fundamentals of Aerodynamics. McGraw-Hill, New York (2011)
11.
go back to reference Bosch, A., Schmehl, R., Tiso, P., Rixen, D.: Dynamic nonlinear aeroelastic model of a kite for power generation. J. Guidance Control Dyn. 37(5), 1426–1436 (2014)CrossRef Bosch, A., Schmehl, R., Tiso, P., Rixen, D.: Dynamic nonlinear aeroelastic model of a kite for power generation. J. Guidance Control Dyn. 37(5), 1426–1436 (2014)CrossRef
12.
go back to reference Candade, A.A., Ranneberg, M., Schmehl, R.: Structural analysis and optimization of a tethered swept wing for airborne wind energy generation. Wind Energy 23(4), 1006–1025 (2020)CrossRef Candade, A.A., Ranneberg, M., Schmehl, R.: Structural analysis and optimization of a tethered swept wing for airborne wind energy generation. Wind Energy 23(4), 1006–1025 (2020)CrossRef
13.
go back to reference Chang, C.-S., Hodges, D.H., Patil, M.J.: Flight dynamics of highly flexible aircraft. J. Aircr. 45(2), 538–545 (2008)CrossRef Chang, C.-S., Hodges, D.H., Patil, M.J.: Flight dynamics of highly flexible aircraft. J. Aircr. 45(2), 538–545 (2008)CrossRef
14.
go back to reference Shearer, C.M., Cesnik, C.E.S.: Nonlinear flight dynamics of very flexible aircraft. J. Aircr. 44(5), 1528–1545 (2007)CrossRef Shearer, C.M., Cesnik, C.E.S.: Nonlinear flight dynamics of very flexible aircraft. J. Aircr. 44(5), 1528–1545 (2007)CrossRef
15.
go back to reference Noll, T.: Aeroservoelasticity. In: 31st Structures, Structural Dynamics and Materials Conference, pp. 1073 (1990) Noll, T.: Aeroservoelasticity. In: 31st Structures, Structural Dynamics and Materials Conference, pp. 1073 (1990)
16.
go back to reference McGuire, C., Bryant, M.: Design and integration of a hydroelastic solver in the dynamic model of a scaled marine hydrokinetic kite. In: Special Topics in Structural Dynamics & Experimental Techniques, Volume 5: Proceedings of the 41st IMAC, A Conference and Exposition on Structural Dynamics 2023. Springer, Berlin (2023) McGuire, C., Bryant, M.: Design and integration of a hydroelastic solver in the dynamic model of a scaled marine hydrokinetic kite. In: Special Topics in Structural Dynamics & Experimental Techniques, Volume 5: Proceedings of the 41st IMAC, A Conference and Exposition on Structural Dynamics 2023. Springer, Berlin (2023)
17.
go back to reference Beer, F.P., Russel Johnston Jr., E., DeWolf, J.T., Mazurek, D.F.: Mechanics of Materials. McGraw-Hill, New York (2014) Beer, F.P., Russel Johnston Jr., E., DeWolf, J.T., Mazurek, D.F.: Mechanics of Materials. McGraw-Hill, New York (2014)
18.
go back to reference Bisplinghoff, R.L., Ashley, H., Halfman, R.L.: Aeroelasticity. Courier Corporation, Massachusetts (2013) Bisplinghoff, R.L., Ashley, H., Halfman, R.L.: Aeroelasticity. Courier Corporation, Massachusetts (2013)
19.
go back to reference Cobb, M., Reed, J., Daniels, J., Siddiqui, A., Wu, M., Fathy, H., Barton, K., Vermillion, C.: Iterative learning-based path optimization with application to marine hydrokinetic energy systems. IEEE Trans. Control Syst. Technol. 30, 639–653 (2021)CrossRef Cobb, M., Reed, J., Daniels, J., Siddiqui, A., Wu, M., Fathy, H., Barton, K., Vermillion, C.: Iterative learning-based path optimization with application to marine hydrokinetic energy systems. IEEE Trans. Control Syst. Technol. 30, 639–653 (2021)CrossRef
21.
go back to reference Leys, C., Ley, C., Klein, O., Bernard, P., Licata, L.: Detecting outliers: do not use standard deviation around the mean, use absolute deviation around the median. J. Exp. Soc. Psychol. 49(4), 764–766 (2013)CrossRef Leys, C., Ley, C., Klein, O., Bernard, P., Licata, L.: Detecting outliers: do not use standard deviation around the mean, use absolute deviation around the median. J. Exp. Soc. Psychol. 49(4), 764–766 (2013)CrossRef
22.
go back to reference Inman, D.J., Singh, R.C.: Engineering Vibration, vol. 3. Prentice Hall, Englewood Cliffs (1994) Inman, D.J., Singh, R.C.: Engineering Vibration, vol. 3. Prentice Hall, Englewood Cliffs (1994)
24.
go back to reference Nguyen, N.T., Livne, E., Precup, N., Urnes, J.M., Nelson, C., Ting, E., Lebofsky, S.: Experimental investigation of a flexible wing with a variable camber continuous trailing edge flap design. In: 32nd AIAA Applied Aerodynamics Conference, pp. 2441 (2014) Nguyen, N.T., Livne, E., Precup, N., Urnes, J.M., Nelson, C., Ting, E., Lebofsky, S.: Experimental investigation of a flexible wing with a variable camber continuous trailing edge flap design. In: 32nd AIAA Applied Aerodynamics Conference, pp. 2441 (2014)
Metadata
Title
Development and Modal Characterization of a Scaled Underwater Kite Wing
Authors
Carson M. McGuire
Matthew Bryant
Copyright Year
2024
DOI
https://doi.org/10.1007/978-3-031-68901-7_5