Skip to main content
Top
Published in: Journal of Materials Engineering and Performance 9/2022

21-03-2022 | Technical Article

Development of a Modified Gurson–Tvergaard–Needleman Damage Model Characterizing the Strain-Rate-Dependent Behavior of 6061-T5 Aluminum Alloy

Authors: Zhigang Li, Rui Li, Cheng Ji, Jianguang Liu, Zhikai He

Published in: Journal of Materials Engineering and Performance | Issue 9/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

It is of vital importance to improve the lightweight and crash safety of automobiles to accurately characterize the fracture features of automotive aluminum alloys under complex working conditions. This study starts with mechanical tests of 6061-T5 aluminum alloy under different stress states and strain rates, the results of which show obvious strain rate sensitivity in such a material. Then, the parameters of the Gurson–Tvergaard–Needleman_Johnson–Cook (GTN_JC) damage model are calibrated based on the test data under different stress states. In view of the fact that the GTN model cannot reflect the strain rate effect, the yield stress is introduced into the strain rate term to modify its hardening stage; in addition, the relationships among \({f}_{c}\),\({f}_{F}\) and the strain rate are established to modify its fracture stage. The modified GTN model can accurately predict the plastic and fracture features of 6061-T5 aluminum alloy at different strain rates. Finally, the modified GTN damage model is programmed as a UMAT in LS-DYNA for simulation analysis. The results of the simulation and the test agree with each other very well, proving the superior reliability of the UMAT.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference H.Z. Lu, M.T. Ma, J.H. You and Z.G. Li, Application of Aluminum Alloy in Auto Panel and Research Development of Related Technology[J], World Nonferrous Metals, 2008, 5, p 66–70. (in Chinese) H.Z. Lu, M.T. Ma, J.H. You and Z.G. Li, Application of Aluminum Alloy in Auto Panel and Research Development of Related Technology[J], World Nonferrous Metals, 2008, 5, p 66–70. (in Chinese)
2.
go back to reference S. Simunovic, P. Nukala, J. Fekete, D. Meuleman and M. Milititsky, Modeling of Strain Rate Effects in Automotive Impact[J], SAE Trans., 2003, 112, p 733–743. S. Simunovic, P. Nukala, J. Fekete, D. Meuleman and M. Milititsky, Modeling of Strain Rate Effects in Automotive Impact[J], SAE Trans., 2003, 112, p 733–743.
3.
go back to reference Y.X. Yan, Q. Sun, J.J. Chen and H.L. Pan, The Initiation and Propagation of Edge Cracks of Silicon Steel During Tandem Cold Rolling Process Based on the Gurson-Tvergaard-Needleman Damage Model[J], J. Mater. Process. Technol., 2013, 213(4), p 598–605. CrossRef Y.X. Yan, Q. Sun, J.J. Chen and H.L. Pan, The Initiation and Propagation of Edge Cracks of Silicon Steel During Tandem Cold Rolling Process Based on the Gurson-Tvergaard-Needleman Damage Model[J], J. Mater. Process. Technol., 2013, 213(4), p 598–605. CrossRef
4.
go back to reference B.G. Teng, W.N. Wang, Y.Q. Liu and S.J. Yuan, Bursting Prediction of Hydroforming Aluminum Alloy Tube Based on Gurson-Tvergaard-Needleman Damage Model[J], Procedia Eng., 2014, 81, p 2211–2216. CrossRef B.G. Teng, W.N. Wang, Y.Q. Liu and S.J. Yuan, Bursting Prediction of Hydroforming Aluminum Alloy Tube Based on Gurson-Tvergaard-Needleman Damage Model[J], Procedia Eng., 2014, 81, p 2211–2216. CrossRef
5.
go back to reference Q. Guo, F.G. Lu, H.C. Cui, R.J. Yang, X. Liu and X.H. Tang, Modelling the Crack Propagation Behavior in 9Cr/Cr Mo V Welds[J], J. Mater. Process. Technol., 2015, 226, p 125–133. CrossRef Q. Guo, F.G. Lu, H.C. Cui, R.J. Yang, X. Liu and X.H. Tang, Modelling the Crack Propagation Behavior in 9Cr/Cr Mo V Welds[J], J. Mater. Process. Technol., 2015, 226, p 125–133. CrossRef
6.
go back to reference A.L. Gurson, Continuum Theory of Ductile Rupture by Void Nucleation and Growth: Part I—Yield Criteria and Flow Rules for Porous Ductile Media[J], J. Eng. Mater. Technol., 1977, 99(1), p 2–15. CrossRef A.L. Gurson, Continuum Theory of Ductile Rupture by Void Nucleation and Growth: Part I—Yield Criteria and Flow Rules for Porous Ductile Media[J], J. Eng. Mater. Technol., 1977, 99(1), p 2–15. CrossRef
7.
go back to reference V. Tvergaard and A. Needleman, Analysis of the Cup-Cone Fracture in a Round Tensile Bar[J], Acta metallurgic, 1984, 32(1), p 157–169. CrossRef V. Tvergaard and A. Needleman, Analysis of the Cup-Cone Fracture in a Round Tensile Bar[J], Acta metallurgic, 1984, 32(1), p 157–169. CrossRef
8.
go back to reference H. Zhu, L. Zhu and J.H. Chen, Damage and Fracture Mechanism of 6063 Aluminum Alloy Under Three Kinds of Stress States[J], Rare Met., 2008, 01, p 64–69. CrossRef H. Zhu, L. Zhu and J.H. Chen, Damage and Fracture Mechanism of 6063 Aluminum Alloy Under Three Kinds of Stress States[J], Rare Met., 2008, 01, p 64–69. CrossRef
9.
go back to reference T. Petit, J. Besson, C. Ritter, K. Colas, L. Helfen and T.F. Morgeneyer, Effect of Hardening on Toughness Captured by Stress-Based Damage Nucleation in 6061 Aluminum Alloy[J], Acta Mater., 2019, 180, p 349–365. CrossRef T. Petit, J. Besson, C. Ritter, K. Colas, L. Helfen and T.F. Morgeneyer, Effect of Hardening on Toughness Captured by Stress-Based Damage Nucleation in 6061 Aluminum Alloy[J], Acta Mater., 2019, 180, p 349–365. CrossRef
10.
go back to reference H. Wu, W.C. Xu, D.B. Shan and B.C. Jin, Mechanism of Increasing Spinnability by Multi-Pass Spinning Forming–Analysis of Damage Evolution Using a Modified GTN Model[J], Int. J. Mech. Sci., 2019, 159, p 1–19. CrossRef H. Wu, W.C. Xu, D.B. Shan and B.C. Jin, Mechanism of Increasing Spinnability by Multi-Pass Spinning Forming–Analysis of Damage Evolution Using a Modified GTN Model[J], Int. J. Mech. Sci., 2019, 159, p 1–19. CrossRef
11.
go back to reference Y.B. Chen, C.Y. Zhang and C. Vare, An Extended GTN Model for Indentation-Induced Damage[J], Comput. Mater. Sci., 2017, 128, p 229–235. CrossRef Y.B. Chen, C.Y. Zhang and C. Vare, An Extended GTN Model for Indentation-Induced Damage[J], Comput. Mater. Sci., 2017, 128, p 229–235. CrossRef
12.
go back to reference M. Feucht, D.Z. Sun, T. Erhart, T. Frank. Recent Development and Applications of the Gurson Model[C]. 5. LS-DYNA Anwenderforum, Ulm, 2006 M. Feucht, D.Z. Sun, T. Erhart, T. Frank. Recent Development and Applications of the Gurson Model[C]. 5. LS-DYNA Anwenderforum, Ulm, 2006
13.
go back to reference M. Roth, S. Kolling. Crash and Vibration Analysis of Rotors in a Roots Vacuum Booster[C]// 7th European LS-DYNA Conference, 2009 M. Roth, S. Kolling. Crash and Vibration Analysis of Rotors in a Roots Vacuum Booster[C]// 7th European LS-DYNA Conference, 2009
14.
go back to reference S.B. Lu, L.Y. Zhou and S. Guo, Characterization of Mechanical Properties of Aluminium Alloy 6061–T6 and Low Carbon Steel Q235 Based on Gurson-JC Model[J], J. Hefei Univ. Technol. (Nat. Sci.), 2014, 37(6), p 641–644. ((in Chinese)) S.B. Lu, L.Y. Zhou and S. Guo, Characterization of Mechanical Properties of Aluminium Alloy 6061–T6 and Low Carbon Steel Q235 Based on Gurson-JC Model[J], J. Hefei Univ. Technol. (Nat. Sci.), 2014, 37(6), p 641–644. ((in Chinese))
15.
go back to reference L. Ying, T.H. Gao, H. Rong, X. Han, P. Hu and W.B. Hou, On the Thermal Forming Limit Diagram (TFLD) with GTN Mesoscopic Damage Model for AA7075 Aluminum Alloy: Numerical and Experimental Investigation[J], J. Alloys Compd., 2019, 802, p 675–693. CrossRef L. Ying, T.H. Gao, H. Rong, X. Han, P. Hu and W.B. Hou, On the Thermal Forming Limit Diagram (TFLD) with GTN Mesoscopic Damage Model for AA7075 Aluminum Alloy: Numerical and Experimental Investigation[J], J. Alloys Compd., 2019, 802, p 675–693. CrossRef
16.
go back to reference P. Verleysen and J. Peirs, Quasi-Static and High Strain Rate Fracture Behaviour of Ti6Al4V[J], Int. J. Impact Eng., 2017, 108, p 370–388. CrossRef P. Verleysen and J. Peirs, Quasi-Static and High Strain Rate Fracture Behaviour of Ti6Al4V[J], Int. J. Impact Eng., 2017, 108, p 370–388. CrossRef
17.
go back to reference G. Li and S.S. Cui, Meso-Mechanics and Damage Evolution of AA5182-O Aluminum Alloy Sheet Based on the GTN Model[J], Eng. Fract. Mech., 2020, 235, p 107162. CrossRef G. Li and S.S. Cui, Meso-Mechanics and Damage Evolution of AA5182-O Aluminum Alloy Sheet Based on the GTN Model[J], Eng. Fract. Mech., 2020, 235, p 107162. CrossRef
18.
go back to reference S. Hao and W. Brocks, The Gurson-Tvergaard-Needleman-Model for Rate and Temperature-Dependent Materials with Isotropic and Kinematic Hardening[J], Comput. Mech., 1997, 20(1–2), p 34–40. CrossRef S. Hao and W. Brocks, The Gurson-Tvergaard-Needleman-Model for Rate and Temperature-Dependent Materials with Isotropic and Kinematic Hardening[J], Comput. Mech., 1997, 20(1–2), p 34–40. CrossRef
19.
go back to reference C. Ji, Z.G. Li and J.G. Liu, Development of an Improved MMC-based Fracture Criterion Characterizing the Anisotropic and Strain Rate-Dependent Behavior of 6061–T5 Aluminum Alloy[J], Mech. Mater., 2020, 150, p 103598. CrossRef C. Ji, Z.G. Li and J.G. Liu, Development of an Improved MMC-based Fracture Criterion Characterizing the Anisotropic and Strain Rate-Dependent Behavior of 6061–T5 Aluminum Alloy[J], Mech. Mater., 2020, 150, p 103598. CrossRef
20.
go back to reference B.G. Teng, W.N. Wang and Y.C. Xu, Ductile Fracture Prediction in Aluminium Alloy 5A06 Sheet Forming Based on GTN Damage Model[J], Eng. Fract. Mech., 2017, 186, p 242–254. CrossRef B.G. Teng, W.N. Wang and Y.C. Xu, Ductile Fracture Prediction in Aluminium Alloy 5A06 Sheet Forming Based on GTN Damage Model[J], Eng. Fract. Mech., 2017, 186, p 242–254. CrossRef
21.
go back to reference G.R. Johnson and W.H. Cook, Fracture Characteristics of Three Metals Subjected to Various Strains, Strain Rates, Temperatures and Pressures[J], Eng. Fract. Mech., 1985, 21(1), p 31–48. CrossRef G.R. Johnson and W.H. Cook, Fracture Characteristics of Three Metals Subjected to Various Strains, Strain Rates, Temperatures and Pressures[J], Eng. Fract. Mech., 1985, 21(1), p 31–48. CrossRef
22.
go back to reference Z.G. Li, J.J. Wang, H.F. Yang, J.G. Liu and C. Ji, A Modified Johnson-Cook Constitutive Model for Characterizing the Hardening Behavior of Typical Magnesium Alloys Under Tension at Different Strain Rates: Experiment and Simulation[J], J. Mater. Eng. Perform., 2020, 29(12), p 8319–8330. CrossRef Z.G. Li, J.J. Wang, H.F. Yang, J.G. Liu and C. Ji, A Modified Johnson-Cook Constitutive Model for Characterizing the Hardening Behavior of Typical Magnesium Alloys Under Tension at Different Strain Rates: Experiment and Simulation[J], J. Mater. Eng. Perform., 2020, 29(12), p 8319–8330. CrossRef
23.
go back to reference R. Safdarian, Forming Limit Diagram Prediction of 6061 Aluminum by GTN Damage Model[J], Mech. Ind., 2018, 19(2), p 202–213. CrossRef R. Safdarian, Forming Limit Diagram Prediction of 6061 Aluminum by GTN Damage Model[J], Mech. Ind., 2018, 19(2), p 202–213. CrossRef
24.
go back to reference B.V. Farahan, R. Amaral, J. Belinha, P.J. Tavares and P. Moreira, A GTN Failure Analysis of an AA6061-T6 Bi-failure Specimen[J], Procedia Struct. Integr., 2017, 5, p 981–988. CrossRef B.V. Farahan, R. Amaral, J. Belinha, P.J. Tavares and P. Moreira, A GTN Failure Analysis of an AA6061-T6 Bi-failure Specimen[J], Procedia Struct. Integr., 2017, 5, p 981–988. CrossRef
25.
go back to reference W.N. Wang. Fracture prediction of 5A06 aluminum alloy sheet in different stress states[D]. Harbin Institute of Technology, 2015. (in Chinese) W.N. Wang. Fracture prediction of 5A06 aluminum alloy sheet in different stress states[D]. Harbin Institute of Technology, 2015. (in Chinese)
26.
go back to reference I.S. Boldyrev, I.A. Shchurov and A.V. Nikonov, Numerical Simulation of the Aluminum 6061–T6 Cutting and the Effect of the Constitutive Material Model and Failure Criteria on Cutting Forces’ Prediction[J], Procedia Eng., 2016, 150, p 866–870. CrossRef I.S. Boldyrev, I.A. Shchurov and A.V. Nikonov, Numerical Simulation of the Aluminum 6061–T6 Cutting and the Effect of the Constitutive Material Model and Failure Criteria on Cutting Forces’ Prediction[J], Procedia Eng., 2016, 150, p 866–870. CrossRef
27.
go back to reference W. Volk. New experiment and numerical approach in the evaluation of the FLD with the FE-method[C]// In Proceedings of the FLC-Zurich 06, Zurich, Switzerland, 2006. W. Volk. New experiment and numerical approach in the evaluation of the FLD with the FE-method[C]// In Proceedings of the FLC-Zurich 06, Zurich, Switzerland, 2006.
28.
go back to reference Z.Y. Chen and X.H. Dong, The GTN Damage Model Based on Hill’48 Anisotropic Yield Criterion and its Application in Sheet Metal Forming[J], Comput. Mater. Sci., 2009, 44(3), p 1013–1021. CrossRef Z.Y. Chen and X.H. Dong, The GTN Damage Model Based on Hill’48 Anisotropic Yield Criterion and its Application in Sheet Metal Forming[J], Comput. Mater. Sci., 2009, 44(3), p 1013–1021. CrossRef
Metadata
Title
Development of a Modified Gurson–Tvergaard–Needleman Damage Model Characterizing the Strain-Rate-Dependent Behavior of 6061-T5 Aluminum Alloy
Authors
Zhigang Li
Rui Li
Cheng Ji
Jianguang Liu
Zhikai He
Publication date
21-03-2022
Publisher
Springer US
Published in
Journal of Materials Engineering and Performance / Issue 9/2022
Print ISSN: 1059-9495
Electronic ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-022-06789-2

Other articles of this Issue 9/2022

Journal of Materials Engineering and Performance 9/2022 Go to the issue

Premium Partners