Skip to main content
Top

2025 | OriginalPaper | Chapter

Development of a Numerical Methodology Able to Simulate the Unstable Mixed Mode Delamination Growth in Stiffened Composite Panels Under Cyclic Loading Conditions

Authors : Aniello Riccio, Rossana Castaldo, Angela Russo

Published in: Dynamic Response and Failure of Composite Materials

Publisher: Springer Nature Switzerland

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Aeronautical structures, often, experience impacts with foreign objects in service and during maintenance operations. Foreign Objects Impacts (FOI) can lead to critical damages and can compromise the overall performances of structural components. Indeed, among the others, composite components can exhibit various interacting post impacts damage mechanisms, including fiber breakage, matrix fracture, and interlaminar damages, such as delamination between different layers of the laminates. Delamination represents the most critical failure mechanisms, as it is, often, undetectable by visual inspections and it may, unstably and silently, develop within the component. This Phenomenon may be amplified under cyclic loading conditions, as the residual strength and stiffness can decrease rapidly after a certain number of cycles, potentially leading to structural collapse [1]. Unstable propagation of delaminations is particularly critical, since it, actually, can take place without the need of increasing the load acting on the structure. This phenomenon, which is very dangerous for the structural integrity of components, can be very challenging to be predicted, under fatigue loading conditions, by the standard geometrically non-linear Finite Elements Methodologies (FEM) which use a sequence of simulations under force control to mimic the fatigue behaviour of composite materials. Actually, FEM simulations under controlled force levels lead to convergence issues when predicting the highly dynamic behaviour of the unstable growth of delaminations under fatigue loading conditions.
The research activity, presented in this paper, is aimed to develop an alternative efficient methodology able to mimic the unstable delamination propagation under cyclic loading conditions in composite structures by non-linear static analyses. This new methodology has been demonstrated to be able to correctly consider the fast variation of delamination size associated to decrease in loading during the unstable growth phenomenon under cyclic loading conditions. To achieve this objective, the Paris Law [2, 3] approach has been implemented in the ANSYS FEM code together with an enhanced Virtual Crack Closure Technique (VCCT) based method.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Davies, G.A.O., Zhang, X.: Impact damage prediction in carbon composite structures. Int. J. Impact Eng 16(1), 149–170 (1995)CrossRef Davies, G.A.O., Zhang, X.: Impact damage prediction in carbon composite structures. Int. J. Impact Eng 16(1), 149–170 (1995)CrossRef
2.
go back to reference Gu, Z.L., Sun, C.T.: Prediction of impact damage region in SMC composites. Compos. Struct. 7(3), 179–190 (1987)CrossRef Gu, Z.L., Sun, C.T.: Prediction of impact damage region in SMC composites. Compos. Struct. 7(3), 179–190 (1987)CrossRef
3.
go back to reference Godwin, D.: Impact behaviour of thermoplastic composites. CAD in Comp. Mat. Tech. Brebbia, de Wilde, Blain. Springer-Verlag (1988) Godwin, D.: Impact behaviour of thermoplastic composites. CAD in Comp. Mat. Tech. Brebbia, de Wilde, Blain. Springer-Verlag (1988)
4.
go back to reference Salpekar: Analysis of delamination in cross ply laminates initiating from impact induced matrix cracking. NASA Contractor Report 187594 (1991) Salpekar: Analysis of delamination in cross ply laminates initiating from impact induced matrix cracking. NASA Contractor Report 187594 (1991)
5.
go back to reference Yang, J.N.: Fatigue and residua strength degradation for graphite/ epoxy composites under tension–compression cyclic loadings. J. Compos. Mater. 12, 19–39 (1978)CrossRef Yang, J.N.: Fatigue and residua strength degradation for graphite/ epoxy composites under tension–compression cyclic loadings. J. Compos. Mater. 12, 19–39 (1978)CrossRef
6.
go back to reference Yang, J.N., Jones, D.L.: Statistical fatigue of graphite/epoxy angle-ply laminates in shear. J. Compos. Mater. 12, 371–389 (1978)CrossRef Yang, J.N., Jones, D.L.: Statistical fatigue of graphite/epoxy angle-ply laminates in shear. J. Compos. Mater. 12, 371–389 (1978)CrossRef
7.
go back to reference Diao, X., Lessard, L., Shokrieh, M.: Statistical model for multiaxial fatigue behaviour of unidirectional plies. Compos. Sci. Technol. 13, 2025–2035 (1999)CrossRef Diao, X., Lessard, L., Shokrieh, M.: Statistical model for multiaxial fatigue behaviour of unidirectional plies. Compos. Sci. Technol. 13, 2025–2035 (1999)CrossRef
8.
go back to reference Whitworth, H.A.: Evaluation of the residual strength degradation in composite laminates under fatigue loading. Compos. Struct. 48(4), 261–264 (2000)CrossRef Whitworth, H.A.: Evaluation of the residual strength degradation in composite laminates under fatigue loading. Compos. Struct. 48(4), 261–264 (2000)CrossRef
9.
go back to reference Pantelakis, S.G., Kyriakakis, E.C., Papanikos, P.: Non-destructive fatigue damage characterization of laminated thermosetting fibrous composites. Fatigue Fract. Eng. Mater. Struct. 24(10), 651–662 (2001)CrossRef Pantelakis, S.G., Kyriakakis, E.C., Papanikos, P.: Non-destructive fatigue damage characterization of laminated thermosetting fibrous composites. Fatigue Fract. Eng. Mater. Struct. 24(10), 651–662 (2001)CrossRef
10.
go back to reference Pantelakis, S.G., Kyriakakis, E.C.: Fatigue damage of APC-2 composite assessed from material degradation and non-destructive evaluation data. Theor. Appl. Fract. Mech. 32, 37–46 (1999)CrossRef Pantelakis, S.G., Kyriakakis, E.C.: Fatigue damage of APC-2 composite assessed from material degradation and non-destructive evaluation data. Theor. Appl. Fract. Mech. 32, 37–46 (1999)CrossRef
11.
go back to reference Tserpes, K.I., Papanikos, P., Labeas, G., Pantelakis, S.: Fatigue damage accumulation and residual strength assessment of CFRP laminates. Compos. Struct. 63(2), 219–230 (2004)CrossRef Tserpes, K.I., Papanikos, P., Labeas, G., Pantelakis, S.: Fatigue damage accumulation and residual strength assessment of CFRP laminates. Compos. Struct. 63(2), 219–230 (2004)CrossRef
12.
go back to reference The virtual crack closure technique for modeling interlaminar failure and delamination in advanced composite materials. In: Numerical Modelling of Failure in Advanced Composite Materials, pp. 3–53 (2015) The virtual crack closure technique for modeling interlaminar failure and delamination in advanced composite materials. In: Numerical Modelling of Failure in Advanced Composite Materials, pp. 3–53 (2015)
13.
go back to reference Russo, A., Sellitto, A., Palumbo, C., Castaldo, R., Riccio, A.: Parametric investigation of stiffened panel subjected to compressive loads: influence of initial delamination length on damage behaviour. Procedia Struct. Integrity 52, 535–542 (2024)CrossRef Russo, A., Sellitto, A., Palumbo, C., Castaldo, R., Riccio, A.: Parametric investigation of stiffened panel subjected to compressive loads: influence of initial delamination length on damage behaviour. Procedia Struct. Integrity 52, 535–542 (2024)CrossRef
14.
go back to reference Paris, P.C., Gomez, M.P., Anderson, W.E.: A rational analytic theory of fatigue. Trend. Eng. 13(9), 9–14 (1961) Paris, P.C., Gomez, M.P., Anderson, W.E.: A rational analytic theory of fatigue. Trend. Eng. 13(9), 9–14 (1961)
15.
go back to reference Paris, P.C., Erdogan, F.: A critical analysis of crack propagation laws. J. Basic Eng. 85(4), 528–533 (1963)CrossRef Paris, P.C., Erdogan, F.: A critical analysis of crack propagation laws. J. Basic Eng. 85(4), 528–533 (1963)CrossRef
16.
go back to reference Riccio, A., Raimondo, A., Scaramuzzino, F.: A robust numerical approach for the simulation of skin–stringer debonding growth in stiffened composite panels under compression. Compos. Part B 71, 131–142 (2015)CrossRef Riccio, A., Raimondo, A., Scaramuzzino, F.: A robust numerical approach for the simulation of skin–stringer debonding growth in stiffened composite panels under compression. Compos. Part B 71, 131–142 (2015)CrossRef
17.
go back to reference Pietropaoli, E., Riccio, A.: On the robustness of finite element procedures based on virtual crack closure technique and fail release approach for delamination growth phenomena. Definition and assessment of a novel methodology. Compos. Sci. Technol. 70, 1288–1300 (2010)CrossRef Pietropaoli, E., Riccio, A.: On the robustness of finite element procedures based on virtual crack closure technique and fail release approach for delamination growth phenomena. Definition and assessment of a novel methodology. Compos. Sci. Technol. 70, 1288–1300 (2010)CrossRef
Metadata
Title
Development of a Numerical Methodology Able to Simulate the Unstable Mixed Mode Delamination Growth in Stiffened Composite Panels Under Cyclic Loading Conditions
Authors
Aniello Riccio
Rossana Castaldo
Angela Russo
Copyright Year
2025
DOI
https://doi.org/10.1007/978-3-031-77697-7_11

Premium Partners