Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

06-08-2018 | Issue 4/2019

Fire Technology 4/2019

Development of an Integrated Risk Assessment Method to Quantify the Life Safety Risk in Buildings in Case of Fire

Journal:
Fire Technology > Issue 4/2019
Authors:
Bart Van Weyenberge, Xavier Deckers, Robby Caspeele, Bart Merci
Important notes

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

An integrated probabilistic risk assessment methodology is developed for the purpose of quantifying the life safety level of people present in buildings in the context of fire safety design. Multiple risk based concepts and tools have been developed in previous research to objectify performance based design methods for simple building types and layouts. However, these available models lack an integrated approach for challenging building designs and moreover they are not adequately coupled, most often resulting in a significant computational effort. Hence, there is a need for a practical and efficient framework for dealing with complicated building layouts and different occupancy types. Therefore, a computationally efficient quantitative risk assessment method is developed that provides a framework by combining deterministic sub-models and probabilistic techniques to quantify the fire safety level by means of failure probabilities, individual and societal risk. The deterministic framework is supported by analytical and numerical models. The probabilistic framework is supported by response surface modelling, sampling techniques and limit state design. Following the theoretical description of the model, a case study of a five storey commercial shopping mall of 25,000 m2 is elaborated and discussed as proof of concept. Multiple fire, building and occupant variables are implemented in the model. Three different fire safety designs are compared, resulting in quantified risks between 10−6 and 10−8. The case study proves the validity of the newly developed integrated methodology for this type of buildings and its benefits in fire safety engineering.

Please log in to get access to this content

To get access to this content you need the following product:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Literature
About this article

Other articles of this Issue 4/2019

Fire Technology 4/2019 Go to the issue