Skip to main content
Top

2020 | OriginalPaper | Chapter

25. Development of Carbon Nanotube-Reinforced Ceramic Matrix Nanocomposites for Advanced Structural Applications

Authors : Luv Gurnani, Amartya Mukhopadhyay

Published in: Handbook of Advanced Ceramics and Composites

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Ceramic matrix composites containing fiber reinforcements possess superior mechanical and tribological properties, as compared to their monolithic counterparts, that render them better suited for engineering applications demanding high strength, wear resistance, and resistance to thermal shock. Among the wide range of reinforcements used for toughening the otherwise intrinsically brittle bulk ceramic materials, carbon nanotubes (CNTs), owing to their excellent physical, mechanical, and thermal properties, are considered to be one of the most promising reinforcement types. The exceptional mechanical properties of CNTs offer excellent opportunities toward the development of considerably stronger and tougher ceramic nanocomposite systems for potential applications in aircraft and aerospace industries. However, there are many challenges with respect to the processing of CNT-reinforced bulk ceramic materials that limit their commercial applications to a considerable extent. Additionally, dispersion of the CNTs, optimization of the CNT volume fractions, development of suitable CNT/matrix interfaces, and distribution within the sintered polycrystalline ceramic microstructures are some of the aspects that need particular attention. Continuing research efforts have been directed toward addressing issues related to such aspects, in a bid to attain best possible combination of mechanical and tribological properties. With regard to microstructure development, achieving uniform distribution of well-dispersed CNTs within the sintered polycrystalline ceramic matrix (i.e., reinforcing the grain interiors and not just the grain boundaries with CNTs) has been found to be particularly difficult, until very recently. In these contexts, after discussing some of the basic aspects of carbon nanotubes and ceramic-CNT composites, the present chapter provides a comprehensive review of the overall status of research and development in CNT-reinforced ceramic matrix composites, with particular emphasis on a variety of processing techniques investigated to date in a bid to optimize the quality of CNT dispersion, character of the CNT-matrix interfaces, eventual densification of the composites, and also cost-effectiveness. The influences of CNT reinforcements on the properties of the some of the important ceramic systems for advanced structural applications are discussed, with an emphasis towards fracture behavior and the possible toughening mechanisms. This review also highlights the more recent research efforts that have been conducted to address the issues concerning inhomogeneous dispersion and distribution of CNTs within the ceramic matrix, thus aiming toward the realization of the full potential of CNTs as reinforcing fibers. Lastly, the various potential applications for ceramic-CNT composites as structural materials have been highlighted, with an outlook toward the scope for future developments and issues that need to be further addressed.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Crivelli-Visconti I, Cooper GA (1969) Mechanical properties of a new carbon fibre material. Nature 221:754–755CrossRef Crivelli-Visconti I, Cooper GA (1969) Mechanical properties of a new carbon fibre material. Nature 221:754–755CrossRef
2.
go back to reference Marshall DB, Evans AG (1985) Failure mechanisms in ceramic-fiber/ceramic-matrix composites. J Am Ceram Soc 68:225–231CrossRef Marshall DB, Evans AG (1985) Failure mechanisms in ceramic-fiber/ceramic-matrix composites. J Am Ceram Soc 68:225–231CrossRef
3.
go back to reference Sternitzke M (1997) Structural ceramic nanocomposites. J Eur Ceram Soc 17:1061–1082CrossRef Sternitzke M (1997) Structural ceramic nanocomposites. J Eur Ceram Soc 17:1061–1082CrossRef
4.
go back to reference Mukhopadhyay A, Basu B (2007) Consolidation–microstructure–property relationships in bulk nanoceramics and ceramic nanocomposites: a review. Int Mater Rev 52:257–288CrossRef Mukhopadhyay A, Basu B (2007) Consolidation–microstructure–property relationships in bulk nanoceramics and ceramic nanocomposites: a review. Int Mater Rev 52:257–288CrossRef
5.
go back to reference Awaji H, Choi SM, Yagi E (2002) Mechanisms of toughening and strengthening in ceramic-based nanocomposites. Mech Mater 34:411–422CrossRef Awaji H, Choi SM, Yagi E (2002) Mechanisms of toughening and strengthening in ceramic-based nanocomposites. Mech Mater 34:411–422CrossRef
6.
go back to reference Brennan JJ, Prewo KM (1982) Silicon carbide fibre reinforced glass-ceramic matrix composites exhibiting high strength and toughness. J Mater Sci 17:2371–2383CrossRef Brennan JJ, Prewo KM (1982) Silicon carbide fibre reinforced glass-ceramic matrix composites exhibiting high strength and toughness. J Mater Sci 17:2371–2383CrossRef
7.
go back to reference Levi CG, Yang JY, Dalgleish BJ, Zok FW, Evans AG (1998) Processing and performance of an all-oxide ceramic composite. J Am Ceram Soc 81:2077–2086CrossRef Levi CG, Yang JY, Dalgleish BJ, Zok FW, Evans AG (1998) Processing and performance of an all-oxide ceramic composite. J Am Ceram Soc 81:2077–2086CrossRef
8.
go back to reference Dassios KG (2007) A review of the pull-out mechanism in the fracture of brittle-matrix fibre-reinforced composites. Adv Compos Lett 16:17–24CrossRef Dassios KG (2007) A review of the pull-out mechanism in the fracture of brittle-matrix fibre-reinforced composites. Adv Compos Lett 16:17–24CrossRef
9.
go back to reference Klug T, Bruckner R (1994) Preparation of C-fibre borosilicate glass composites: influence of the fibre type on mechanical properties. J Mater Sci 29:4013–4021CrossRef Klug T, Bruckner R (1994) Preparation of C-fibre borosilicate glass composites: influence of the fibre type on mechanical properties. J Mater Sci 29:4013–4021CrossRef
10.
go back to reference Beyerle DS, Spearing SM, Zok FW, Evans AG (1992) Damage and failure in unidirectional ceramic-matrix composites. J Am Ceram Soc 75:2719–2725CrossRef Beyerle DS, Spearing SM, Zok FW, Evans AG (1992) Damage and failure in unidirectional ceramic-matrix composites. J Am Ceram Soc 75:2719–2725CrossRef
11.
go back to reference Evans AG, Zok FW (1994) The physics and mechanics of fibre-reinforced brittle matrix composites. J Mater Sci 29:3857–3896CrossRef Evans AG, Zok FW (1994) The physics and mechanics of fibre-reinforced brittle matrix composites. J Mater Sci 29:3857–3896CrossRef
12.
go back to reference Davidge RW, Green TJ (1968) The strength of two-phase ceramic/glass materials. J Mater Sci 3:629–634CrossRef Davidge RW, Green TJ (1968) The strength of two-phase ceramic/glass materials. J Mater Sci 3:629–634CrossRef
13.
go back to reference Niihara K (1991) New design concept of structural ceramics. J Ceram Soc Jpn 99:974–982CrossRef Niihara K (1991) New design concept of structural ceramics. J Ceram Soc Jpn 99:974–982CrossRef
14.
go back to reference Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58CrossRef Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58CrossRef
15.
go back to reference Treacy MMJ, Ebbesen TW, Gibson JM (1996) Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature 381:678–680CrossRef Treacy MMJ, Ebbesen TW, Gibson JM (1996) Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature 381:678–680CrossRef
16.
go back to reference Yu MF, Lourie O, Dyer MJ, Moloni K, Kelly TF, Ruoff RS (2000) Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 287:637–640CrossRef Yu MF, Lourie O, Dyer MJ, Moloni K, Kelly TF, Ruoff RS (2000) Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 287:637–640CrossRef
17.
go back to reference Iijima S, Ichihashi T (1993) Single-shell carbon nanotubes of 1-nm diameter. Nature 363:603–605CrossRef Iijima S, Ichihashi T (1993) Single-shell carbon nanotubes of 1-nm diameter. Nature 363:603–605CrossRef
18.
go back to reference Zheng LX, O’Connell MJ, Doorn SK, Liao XZ, Zhao YH, Akhadov EA, Hoffbauer MA, Roop BJ, Jia QX, Dye RC, Peterson DE, Huang SM, Liu J, Zhu YT (2004) Ultralong single-wall carbon nanotubes. Nat Mater 3:673–676CrossRef Zheng LX, O’Connell MJ, Doorn SK, Liao XZ, Zhao YH, Akhadov EA, Hoffbauer MA, Roop BJ, Jia QX, Dye RC, Peterson DE, Huang SM, Liu J, Zhu YT (2004) Ultralong single-wall carbon nanotubes. Nat Mater 3:673–676CrossRef
19.
go back to reference Cho J, Boccaccini AR, Shaffer MSP (2009) Ceramic matrix composites containing carbon nanotubes. J Mater Sci 44:1934–1951CrossRef Cho J, Boccaccini AR, Shaffer MSP (2009) Ceramic matrix composites containing carbon nanotubes. J Mater Sci 44:1934–1951CrossRef
20.
go back to reference Wang X, Padture NP, Tanaka H (2004) Contact-damage-resistant ceramic/single-wall carbon nanotubes and ceramic/graphite composites. Nat Mater 3:539–544CrossRef Wang X, Padture NP, Tanaka H (2004) Contact-damage-resistant ceramic/single-wall carbon nanotubes and ceramic/graphite composites. Nat Mater 3:539–544CrossRef
21.
go back to reference Zhan GD, Kuntz JD, Wan J, Mukherjee AK (2003) Single-wall carbon nanotubes as attractive toughening agents in alumina-based nanocomposites. Nat Mater 2:38–42CrossRef Zhan GD, Kuntz JD, Wan J, Mukherjee AK (2003) Single-wall carbon nanotubes as attractive toughening agents in alumina-based nanocomposites. Nat Mater 2:38–42CrossRef
22.
23.
go back to reference Lu KL, Lago RM, Chen YK, Green MLH, Harris PJF, Tsang SC (1996) Mechanical damage of carbon nanotubes by ultrasound. Carbon 34:814–816CrossRef Lu KL, Lago RM, Chen YK, Green MLH, Harris PJF, Tsang SC (1996) Mechanical damage of carbon nanotubes by ultrasound. Carbon 34:814–816CrossRef
24.
go back to reference Niyogi S, Hamon MA, Perea DE, Kang CB, Zhao B, Pal SK, Wyant AE, Itkis ME, Haddon RC (2003) Ultrasonic dispersions of single-walled carbon nanotubes. J Phys Chem B 107: 8799–8804CrossRef Niyogi S, Hamon MA, Perea DE, Kang CB, Zhao B, Pal SK, Wyant AE, Itkis ME, Haddon RC (2003) Ultrasonic dispersions of single-walled carbon nanotubes. J Phys Chem B 107: 8799–8804CrossRef
25.
go back to reference Monthioux M, Smith BW, Burteaux B, Claye A, Fischer JE, Luzzi DE (2001) Sensitivity of single-wall carbon nanotubes to chemical processing: an electron microscopy investigation. Carbon 39:1251–1272CrossRef Monthioux M, Smith BW, Burteaux B, Claye A, Fischer JE, Luzzi DE (2001) Sensitivity of single-wall carbon nanotubes to chemical processing: an electron microscopy investigation. Carbon 39:1251–1272CrossRef
26.
go back to reference Galaveen SC, Satam MK, Gurnani L, Venkateswaran T, Mukhopadhyay A (2016) Facile-low temperature route towards development of SiC-based coating on carbon nanotubes for improved oxidation resistance. J Mater Sci 51:8543–8549CrossRef Galaveen SC, Satam MK, Gurnani L, Venkateswaran T, Mukhopadhyay A (2016) Facile-low temperature route towards development of SiC-based coating on carbon nanotubes for improved oxidation resistance. J Mater Sci 51:8543–8549CrossRef
27.
go back to reference Curtin WA, Sheldon BW (2004) CNT-reinforced ceramics and metals. Mater Today 7:44–49CrossRef Curtin WA, Sheldon BW (2004) CNT-reinforced ceramics and metals. Mater Today 7:44–49CrossRef
28.
go back to reference Thostenson ET, Ren Z, Chou TW (2001) Advances in the science and technology of carbon nanotubes and their composites: a review. Compos Sci Technol 61:1899–1912CrossRef Thostenson ET, Ren Z, Chou TW (2001) Advances in the science and technology of carbon nanotubes and their composites: a review. Compos Sci Technol 61:1899–1912CrossRef
29.
go back to reference Shigeta M, Komatsu M, Nakashima N (2006) Individual solubilization of single-walled carbon nanotubes using totally aromatic polyimide. Chem Phys Lett 418:115–118CrossRef Shigeta M, Komatsu M, Nakashima N (2006) Individual solubilization of single-walled carbon nanotubes using totally aromatic polyimide. Chem Phys Lett 418:115–118CrossRef
30.
go back to reference Star A, Stoddart JF (2002) Dispersion and solubilization of single-walled carbon nanotubes with a hyperbranched polymer. Macromolecules 35:7516–7520CrossRef Star A, Stoddart JF (2002) Dispersion and solubilization of single-walled carbon nanotubes with a hyperbranched polymer. Macromolecules 35:7516–7520CrossRef
31.
go back to reference Zhu J, Yudasaka M, Zhang M, Iijima S (2004) Dispersing carbon nanotubes in water: a noncovalent and nonorganic way. J Phys Chem B 108:11317–11320CrossRef Zhu J, Yudasaka M, Zhang M, Iijima S (2004) Dispersing carbon nanotubes in water: a noncovalent and nonorganic way. J Phys Chem B 108:11317–11320CrossRef
32.
go back to reference Paredes JI, Burghard M (2004) Dispersions of individual single-walled carbon nanotubes of high length. Langmuir 20:5149–5152CrossRef Paredes JI, Burghard M (2004) Dispersions of individual single-walled carbon nanotubes of high length. Langmuir 20:5149–5152CrossRef
33.
go back to reference Shaffer MSP, Fan X, Windle AH (1998) Dispersion and packing of carbon nanotubes. Carbon 36:1603–1612CrossRef Shaffer MSP, Fan X, Windle AH (1998) Dispersion and packing of carbon nanotubes. Carbon 36:1603–1612CrossRef
34.
go back to reference Perepichka DF, Wudl F, Wilson SR, Schuster DI (2004) The dissolution of carbon nanotubes in aniline, revisited. J Mater Chem 14:2749–2752CrossRef Perepichka DF, Wudl F, Wilson SR, Schuster DI (2004) The dissolution of carbon nanotubes in aniline, revisited. J Mater Chem 14:2749–2752CrossRef
35.
go back to reference Muller TJJ, Bunz UHF (2007) Functional organic materials: syntheses, strategies and applications. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim Muller TJJ, Bunz UHF (2007) Functional organic materials: syntheses, strategies and applications. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
36.
go back to reference Mukhopadhyay A (2009) Fabrication and properties of oxide nanocomposites containing uniformly dispersed second phases. PhD thesis, University of Oxford, Oxford, UK Mukhopadhyay A (2009) Fabrication and properties of oxide nanocomposites containing uniformly dispersed second phases. PhD thesis, University of Oxford, Oxford, UK
37.
go back to reference Vasiliev AL, Poyato R, Padture NP (2007) Single-wall carbon nanotubes at ceramic grain boundaries. Scr Mater 56:461–463CrossRef Vasiliev AL, Poyato R, Padture NP (2007) Single-wall carbon nanotubes at ceramic grain boundaries. Scr Mater 56:461–463CrossRef
38.
go back to reference Wei T, Fan Z, Luo G, Wei F (2008) A new structure for multi-walled carbon nanotubes reinforced alumina nanocomposite with high strength and toughness. Mater Lett 62:641–644CrossRef Wei T, Fan Z, Luo G, Wei F (2008) A new structure for multi-walled carbon nanotubes reinforced alumina nanocomposite with high strength and toughness. Mater Lett 62:641–644CrossRef
39.
go back to reference Satam MK, Gurnani L, Vishwanathe S, Mukhopadhyay A (2016) Development of carbon nanotube reinforced bulk polycrystalline ceramics with intragranular carbon nanotube reinforcement. J Am Ceram Soc 99:2905–2908CrossRef Satam MK, Gurnani L, Vishwanathe S, Mukhopadhyay A (2016) Development of carbon nanotube reinforced bulk polycrystalline ceramics with intragranular carbon nanotube reinforcement. J Am Ceram Soc 99:2905–2908CrossRef
40.
go back to reference Estili M, Kawasaki A (2008) An approach to mass-producing individually alumina-decorated multi-walled carbon nanotubes with optimized and controlled compositions. Scr Mater 58: 906–909CrossRef Estili M, Kawasaki A (2008) An approach to mass-producing individually alumina-decorated multi-walled carbon nanotubes with optimized and controlled compositions. Scr Mater 58: 906–909CrossRef
41.
go back to reference Estili M, Kawasaki A, Sakamoto H, Mekuchi Y, Kuno M, Tsukada T (2008) The homogeneous dispersion of surfactantless, slightly disordered, crystalline, multiwalled carbon nanotubes in α-alumina ceramics for structural reinforcement. Acta Mater 56:4070–4079CrossRef Estili M, Kawasaki A, Sakamoto H, Mekuchi Y, Kuno M, Tsukada T (2008) The homogeneous dispersion of surfactantless, slightly disordered, crystalline, multiwalled carbon nanotubes in α-alumina ceramics for structural reinforcement. Acta Mater 56:4070–4079CrossRef
42.
go back to reference Chu BTT, Tobias G, Salzmann CG, Ballesteros B, Grobert N, Todd RI, Green ML (2008) Fabrication of carbon-nanotube-reinforced glass–ceramic nanocomposites by ultrasonic in situ sol–gel processing. J Mater Chem 18:5344CrossRef Chu BTT, Tobias G, Salzmann CG, Ballesteros B, Grobert N, Todd RI, Green ML (2008) Fabrication of carbon-nanotube-reinforced glass–ceramic nanocomposites by ultrasonic in situ sol–gel processing. J Mater Chem 18:5344CrossRef
43.
go back to reference Mukhopadhyay A, Chu BTT, Green MLH, Todd RI (2010) Understanding the mechanical reinforcement of uniformly dispersed multiwalled carbon nanotubes in alumino-borosilicate glass ceramic. Acta Mater 58:2685–2697CrossRef Mukhopadhyay A, Chu BTT, Green MLH, Todd RI (2010) Understanding the mechanical reinforcement of uniformly dispersed multiwalled carbon nanotubes in alumino-borosilicate glass ceramic. Acta Mater 58:2685–2697CrossRef
44.
go back to reference Boccaccini AR, Acevedo DR, Brusatin G, Colombo P (2005) Borosilicate glass matrix composites containing multi-wall carbon nanotubes. J Eur Ceram Soc 25:1515–1523CrossRef Boccaccini AR, Acevedo DR, Brusatin G, Colombo P (2005) Borosilicate glass matrix composites containing multi-wall carbon nanotubes. J Eur Ceram Soc 25:1515–1523CrossRef
45.
go back to reference Boccaccini AR, Thomas BJC, Brusatin G, Colombo P (2007) Mechanical and electrical properties of hot-pressed borosilicate glass matrix composites containing multi-wall carbon nanotubes. J Mater Sci 42:2030–2036CrossRef Boccaccini AR, Thomas BJC, Brusatin G, Colombo P (2007) Mechanical and electrical properties of hot-pressed borosilicate glass matrix composites containing multi-wall carbon nanotubes. J Mater Sci 42:2030–2036CrossRef
46.
go back to reference Chintapalli RK, Marro FG, Milsom B, Reece M, Anglada M (2012) Processing and characterization of high-density zirconia-carbon nanotube composites. Mater Sci Eng A 549:50–59CrossRef Chintapalli RK, Marro FG, Milsom B, Reece M, Anglada M (2012) Processing and characterization of high-density zirconia-carbon nanotube composites. Mater Sci Eng A 549:50–59CrossRef
47.
go back to reference Ning J, Zhang J, Pan Y, Guo J (2003) Fabrication and mechanical properties of SiO2 matrix composites reinforced by carbon nanotube. Mater Sci Eng A 357:392–396CrossRef Ning J, Zhang J, Pan Y, Guo J (2003) Fabrication and mechanical properties of SiO2 matrix composites reinforced by carbon nanotube. Mater Sci Eng A 357:392–396CrossRef
48.
go back to reference Peigney A, Laurent C, Dobigeon F, Rousset A (1997) Carbon nanotubes grown in situ by a novel catalytic method. J Mater Res 12:613–615CrossRef Peigney A, Laurent C, Dobigeon F, Rousset A (1997) Carbon nanotubes grown in situ by a novel catalytic method. J Mater Res 12:613–615CrossRef
49.
go back to reference Peigney A, Laurent C, Dumortier O, Rousset A (1998) Carbon nanotubes–Fe–alumina nanocomposites. Part I: influence of the Fe content on the synthesis of powders. J Eur Ceram Soc 18:1995–2004CrossRef Peigney A, Laurent C, Dumortier O, Rousset A (1998) Carbon nanotubes–Fe–alumina nanocomposites. Part I: influence of the Fe content on the synthesis of powders. J Eur Ceram Soc 18:1995–2004CrossRef
50.
go back to reference Laurent C, Peigney A, Dumortier O, Rousset A (1998) Carbon nanotubes-Fe-alumina nanocomposites. Part II: microstructure and mechanical properties of the hot-pressed composites. J Eur Ceram Soc 18:2005–2013CrossRef Laurent C, Peigney A, Dumortier O, Rousset A (1998) Carbon nanotubes-Fe-alumina nanocomposites. Part II: microstructure and mechanical properties of the hot-pressed composites. J Eur Ceram Soc 18:2005–2013CrossRef
51.
go back to reference Flahaut E, Peigney A, Laurent C, Marlière C, Chastel F, Rousset A (2000) Carbon nanotube-metal-oxide nanocomposites: microstructure, electrical conductivity and mechanical properties. Acta Mater 48:3803–3812CrossRef Flahaut E, Peigney A, Laurent C, Marlière C, Chastel F, Rousset A (2000) Carbon nanotube-metal-oxide nanocomposites: microstructure, electrical conductivity and mechanical properties. Acta Mater 48:3803–3812CrossRef
52.
go back to reference Peigney A, Laurent C, Flahaut E, Rousset A (2000) Carbon nanotubes in novel ceramic matrix nanocomposites. Ceram Int 26:677–683CrossRef Peigney A, Laurent C, Flahaut E, Rousset A (2000) Carbon nanotubes in novel ceramic matrix nanocomposites. Ceram Int 26:677–683CrossRef
53.
go back to reference Peigney A, Flahaut E, Laurent C, Chastel F, Rousset A (2002) Aligned carbon nanotubes in ceramic-matrix nanocomposites prepared by high-temperature extrusion. Chem Phys Lett 352:20–25CrossRef Peigney A, Flahaut E, Laurent C, Chastel F, Rousset A (2002) Aligned carbon nanotubes in ceramic-matrix nanocomposites prepared by high-temperature extrusion. Chem Phys Lett 352:20–25CrossRef
54.
go back to reference Peigney A (2003) Composite materials: tougher ceramics with nanotubes. Nat Mater 2:15–16CrossRef Peigney A (2003) Composite materials: tougher ceramics with nanotubes. Nat Mater 2:15–16CrossRef
55.
go back to reference Xia Z, Riester L, Curtin WA, Li H, Sheldon BW, Liang J, Chang B, Xu JM (2004) Direct observation of toughening mechanisms in carbon nanotube ceramic matrix composites. Acta Mater 52:931–944CrossRef Xia Z, Riester L, Curtin WA, Li H, Sheldon BW, Liang J, Chang B, Xu JM (2004) Direct observation of toughening mechanisms in carbon nanotube ceramic matrix composites. Acta Mater 52:931–944CrossRef
56.
go back to reference Xia Z, Curtin WA, Sheldon BW (2004) Fracture toughness of highly ordered carbon nanotube/alumina nanocomposites. J Eng Mater Technol 126:238CrossRef Xia Z, Curtin WA, Sheldon BW (2004) Fracture toughness of highly ordered carbon nanotube/alumina nanocomposites. J Eng Mater Technol 126:238CrossRef
57.
go back to reference Xia ZH, Lou J, Curtin WA (2008) A multiscale experiment on the tribological behavior of aligned carbon nanotube/ceramic composites. Scr Mater 58:223–226CrossRef Xia ZH, Lou J, Curtin WA (2008) A multiscale experiment on the tribological behavior of aligned carbon nanotube/ceramic composites. Scr Mater 58:223–226CrossRef
58.
go back to reference Kothari AK, Jian K, Rankin J, Sheldon BW (2008) Comparison between carbon nanotube and carbon nanofiber reinforcements in amorphous silicon nitride coatings. J Am Ceram Soc 91:2743–2746CrossRef Kothari AK, Jian K, Rankin J, Sheldon BW (2008) Comparison between carbon nanotube and carbon nanofiber reinforcements in amorphous silicon nitride coatings. J Am Ceram Soc 91:2743–2746CrossRef
59.
go back to reference Kothari AK, Hu S, Xia Z, Konca E, Sheldon BW (2012) Enhanced fracture toughness in carbon-nanotube-reinforced amorphous silicon nitride nanocomposite coatings. Acta Mater 60:3333–3339CrossRef Kothari AK, Hu S, Xia Z, Konca E, Sheldon BW (2012) Enhanced fracture toughness in carbon-nanotube-reinforced amorphous silicon nitride nanocomposite coatings. Acta Mater 60:3333–3339CrossRef
60.
go back to reference Vasudevan S, Kothari A, Sheldon BW (2016) Direct observation of toughening and R-curve behavior in carbon nanotube reinforced silicon nitride. Scr Mater 124:112–116CrossRef Vasudevan S, Kothari A, Sheldon BW (2016) Direct observation of toughening and R-curve behavior in carbon nanotube reinforced silicon nitride. Scr Mater 124:112–116CrossRef
61.
go back to reference Poyato R, Vasiliev AL, Padture NP, Tanaka H, Nishimura T (2006) Aqueous colloidal processing of single-wall carbon nanotubes and their composites with ceramics. Nanotechnology 17:1770–1777CrossRef Poyato R, Vasiliev AL, Padture NP, Tanaka H, Nishimura T (2006) Aqueous colloidal processing of single-wall carbon nanotubes and their composites with ceramics. Nanotechnology 17:1770–1777CrossRef
62.
go back to reference Zhang SC, Fahrenholtz WG, Hilmas GE, Yadlowsky EJ (2010) Pressureless sintering of carbon nanotube-Al2O3composites. J Eur Ceram Soc 30:1373–1380CrossRef Zhang SC, Fahrenholtz WG, Hilmas GE, Yadlowsky EJ (2010) Pressureless sintering of carbon nanotube-Al2O3composites. J Eur Ceram Soc 30:1373–1380CrossRef
63.
go back to reference Fan J, Zhao D, Wu M, Xu Z, Song J (2006) Preparation and microstructure of multi-wall carbon nanotubes-toughened Al2O3 composite. J Am Ceram Soc 89:750–753CrossRef Fan J, Zhao D, Wu M, Xu Z, Song J (2006) Preparation and microstructure of multi-wall carbon nanotubes-toughened Al2O3 composite. J Am Ceram Soc 89:750–753CrossRef
64.
go back to reference Liu Y, Ramirez C, Zhang L, Wu W, Padture NP (2017) In situ direct observation of toughening in isotropic nanocomposites of alumina ceramic and multiwall carbon nanotubes. Acta Mater 127:203–210CrossRef Liu Y, Ramirez C, Zhang L, Wu W, Padture NP (2017) In situ direct observation of toughening in isotropic nanocomposites of alumina ceramic and multiwall carbon nanotubes. Acta Mater 127:203–210CrossRef
65.
go back to reference Sun J, Iwasa M, Gao L, Zhang Q (2004) Single-walled carbon nanotubes coated with titania nanoparticles. Carbon 42:895–899CrossRef Sun J, Iwasa M, Gao L, Zhang Q (2004) Single-walled carbon nanotubes coated with titania nanoparticles. Carbon 42:895–899CrossRef
66.
go back to reference Balázsi C, Fényi B, Hegman N, Kövér Z, Wéber F, Vértesy Z, Kónya Z, Kiricsi I, Biró LP, Arató P (2006) Development of CNT/Si3N4 composites with improved mechanical and electrical properties. Compos Part B Eng 37:418–424CrossRef Balázsi C, Fényi B, Hegman N, Kövér Z, Wéber F, Vértesy Z, Kónya Z, Kiricsi I, Biró LP, Arató P (2006) Development of CNT/Si3N4 composites with improved mechanical and electrical properties. Compos Part B Eng 37:418–424CrossRef
67.
go back to reference Estili M, Kawasaki A, Sakka Y (2012) Highly concentrated 3D macrostructure of individual carbon nanotubes in a ceramic environment. Adv Mater 24:4322–4326CrossRef Estili M, Kawasaki A, Sakka Y (2012) Highly concentrated 3D macrostructure of individual carbon nanotubes in a ceramic environment. Adv Mater 24:4322–4326CrossRef
68.
go back to reference Estili M, Sakka Y (2014) Recent advances in understanding the reinforcing ability and mechanism of carbon nanotubes in ceramic matrix composites. Sci Technol Adv Mater 15:64902CrossRef Estili M, Sakka Y (2014) Recent advances in understanding the reinforcing ability and mechanism of carbon nanotubes in ceramic matrix composites. Sci Technol Adv Mater 15:64902CrossRef
69.
go back to reference Zapata-Solvas E, Gómez-García D, Domínguez-Rodríguez A (2012) Towards physical properties tailoring of carbon nanotubes-reinforced ceramic matrix composites. J Eur Ceram Soc 32:3001–3020CrossRef Zapata-Solvas E, Gómez-García D, Domínguez-Rodríguez A (2012) Towards physical properties tailoring of carbon nanotubes-reinforced ceramic matrix composites. J Eur Ceram Soc 32:3001–3020CrossRef
70.
go back to reference Berguiga L, Bellessa J, Vocanson F, Bernstein E, Plenet JC (2006) Carbon nanotube silica glass composites in thin films by the sol-gel technique. Opt Mater 28:167–171CrossRef Berguiga L, Bellessa J, Vocanson F, Bernstein E, Plenet JC (2006) Carbon nanotube silica glass composites in thin films by the sol-gel technique. Opt Mater 28:167–171CrossRef
71.
go back to reference Zhang Y, Shen Y, Han D, Wang Z, Song J, Niu L (2006) Reinforcement of silica with single-walled carbon nanotubes through covalent functionalization. J Mater Chem 16:4592–4597CrossRef Zhang Y, Shen Y, Han D, Wang Z, Song J, Niu L (2006) Reinforcement of silica with single-walled carbon nanotubes through covalent functionalization. J Mater Chem 16:4592–4597CrossRef
72.
go back to reference Thomas BJC, Shaffer MSP, Boccaccini AR (2009) Sol-gel route to carbon nanotube borosilicate glass composites. Compos Part A Appl Sci Manuf 40:837–845CrossRef Thomas BJC, Shaffer MSP, Boccaccini AR (2009) Sol-gel route to carbon nanotube borosilicate glass composites. Compos Part A Appl Sci Manuf 40:837–845CrossRef
73.
go back to reference López AJ, Rico A, Rodríguez J, Rams J (2010) Tough ceramic coatings: carbon nanotube reinforced silica sol-gel. Appl Surf Sci 256:6375–6384CrossRef López AJ, Rico A, Rodríguez J, Rams J (2010) Tough ceramic coatings: carbon nanotube reinforced silica sol-gel. Appl Surf Sci 256:6375–6384CrossRef
74.
go back to reference López AJ, Ureña A, Rams J (2011) Wear resistant coatings: silica sol-gel reinforced with carbon nanotubes. Thin Solid Films 519:7904–7910CrossRef López AJ, Ureña A, Rams J (2011) Wear resistant coatings: silica sol-gel reinforced with carbon nanotubes. Thin Solid Films 519:7904–7910CrossRef
75.
go back to reference Mo CB, Cha SI, Kim KT, Lee KH, Hong SH (2005) Fabrication of carbon nanotube reinforced alumina matrix nanocomposite by sol-gel process. Mater Sci Eng A 395:124–128CrossRef Mo CB, Cha SI, Kim KT, Lee KH, Hong SH (2005) Fabrication of carbon nanotube reinforced alumina matrix nanocomposite by sol-gel process. Mater Sci Eng A 395:124–128CrossRef
76.
go back to reference Cha SI, Kim KT, Lee KH, Mo CB, Hong SH (2005) Strengthening and toughening of carbon nanotube reinforced alumina nanocomposite fabricated by molecular level mixing process. Scr Mater 53:793–797CrossRef Cha SI, Kim KT, Lee KH, Mo CB, Hong SH (2005) Strengthening and toughening of carbon nanotube reinforced alumina nanocomposite fabricated by molecular level mixing process. Scr Mater 53:793–797CrossRef
77.
go back to reference Yamamoto G, Omori M, Hashida T, Kimura H (2008) A novel structure for carbon nanotube reinforced alumina composites with improved mechanical properties. Nanotechnology 19:315708CrossRef Yamamoto G, Omori M, Hashida T, Kimura H (2008) A novel structure for carbon nanotube reinforced alumina composites with improved mechanical properties. Nanotechnology 19:315708CrossRef
78.
go back to reference Echeberria J, Rodríguez N, Vleugels J, Vanmeensel K, Reyes-Rojas A, Garcia-Reyes A, Dominguez-Rios C, Aguilar-Elguezabal A, Bocanegra-Bernal MH (2012) Hard and tough carbon nanotube-reinforced zirconia-toughened alumina composites prepared by spark plasma sintering. Carbon 50:706–717CrossRef Echeberria J, Rodríguez N, Vleugels J, Vanmeensel K, Reyes-Rojas A, Garcia-Reyes A, Dominguez-Rios C, Aguilar-Elguezabal A, Bocanegra-Bernal MH (2012) Hard and tough carbon nanotube-reinforced zirconia-toughened alumina composites prepared by spark plasma sintering. Carbon 50:706–717CrossRef
79.
go back to reference Kasperski A, Weibel A, Alkattan D, Estournès C, Turq V, Laurent C, Peigney A (2013) Microhardness and friction coefficient of multi-walled carbon nanotube-yttria-stabilized ZrO2 composites prepared by spark plasma sintering. Scr Mater 69:338–341CrossRef Kasperski A, Weibel A, Alkattan D, Estournès C, Turq V, Laurent C, Peigney A (2013) Microhardness and friction coefficient of multi-walled carbon nanotube-yttria-stabilized ZrO2 composites prepared by spark plasma sintering. Scr Mater 69:338–341CrossRef
80.
go back to reference Ma RZ, Wu J, Wei BQ, Liang J, Wu DH (1998) Processing and properties of carbon nanotubes-nano-SiC ceramic. J Mater Sci 33:5243–5246CrossRef Ma RZ, Wu J, Wei BQ, Liang J, Wu DH (1998) Processing and properties of carbon nanotubes-nano-SiC ceramic. J Mater Sci 33:5243–5246CrossRef
81.
go back to reference Morisada Y, Miyamoto Y, Takaura Y, Hirota K, Tamari N (2007) Mechanical properties of SiC composites incorporating SiC-coated multi-walled carbon nanotubes. Int J Refract Met Hard Mater 25:322–327CrossRef Morisada Y, Miyamoto Y, Takaura Y, Hirota K, Tamari N (2007) Mechanical properties of SiC composites incorporating SiC-coated multi-walled carbon nanotubes. Int J Refract Met Hard Mater 25:322–327CrossRef
82.
go back to reference Sarkar K, Sarkar S, Das PK (2016) Spark plasma sintered multiwalled carbon nanotube/silicon carbide composites: densification, microstructure, and tribo-mechanical characterization. J Mater Sci 51:6697–6710CrossRef Sarkar K, Sarkar S, Das PK (2016) Spark plasma sintered multiwalled carbon nanotube/silicon carbide composites: densification, microstructure, and tribo-mechanical characterization. J Mater Sci 51:6697–6710CrossRef
83.
go back to reference Gu Z, Yang Y, Li K, Tao X, Eres G, Howe JY, Zhang L, Li X, Pan Z (2011) Aligned carbon nanotube-reinforced silicon carbide composites produced by chemical vapor infiltration. Carbon 49:2475–2482CrossRef Gu Z, Yang Y, Li K, Tao X, Eres G, Howe JY, Zhang L, Li X, Pan Z (2011) Aligned carbon nanotube-reinforced silicon carbide composites produced by chemical vapor infiltration. Carbon 49:2475–2482CrossRef
84.
go back to reference Balázsi C, Shen Z, Kónya Z, Kasztovszky Z, Wéber F, Vertesy Z, Biro LP, Kiricsi I, Arato P (2005) Processing of carbon nanotube reinforced silicon nitride composites by spark plasma sintering. Compos Sci Technol 65:727–733CrossRef Balázsi C, Shen Z, Kónya Z, Kasztovszky Z, Wéber F, Vertesy Z, Biro LP, Kiricsi I, Arato P (2005) Processing of carbon nanotube reinforced silicon nitride composites by spark plasma sintering. Compos Sci Technol 65:727–733CrossRef
85.
go back to reference Corral EL, Cesarano J, Shyam A, Lara-Curzio E, Bell N, Stuecker J, Perry N, Di Prima M, Munir Z, Garay J, Barrera EV (2008) Engineered nanostructures for multifunctional single-walled carbon nanotube reinforced silicon nitride nanocomposites. J Am Ceram Soc 91: 3129–3137CrossRef Corral EL, Cesarano J, Shyam A, Lara-Curzio E, Bell N, Stuecker J, Perry N, Di Prima M, Munir Z, Garay J, Barrera EV (2008) Engineered nanostructures for multifunctional single-walled carbon nanotube reinforced silicon nitride nanocomposites. J Am Ceram Soc 91: 3129–3137CrossRef
86.
go back to reference Li A, Sun K, Dong W, Zhao D (2007) Mechanical properties, microstructure and histocompatibility of MWCNTs/HAp biocomposites. Mater Lett 61:1839–1844CrossRef Li A, Sun K, Dong W, Zhao D (2007) Mechanical properties, microstructure and histocompatibility of MWCNTs/HAp biocomposites. Mater Lett 61:1839–1844CrossRef
87.
go back to reference Meng YH, Tang CY, Tsui CP, Chen DZ (2008) Fabrication and characterization of needle-like nano-HA and HA/MWNT composites. J Mater Sci Mater Med 19:75–81CrossRef Meng YH, Tang CY, Tsui CP, Chen DZ (2008) Fabrication and characterization of needle-like nano-HA and HA/MWNT composites. J Mater Sci Mater Med 19:75–81CrossRef
88.
go back to reference Lahiri D, Singh V, Keshri AK, Seal S, Agarwal A (2010) Carbon nanotube toughened hydroxyapatite by spark plasma sintering: microstructural evolution and multiscale tribological properties. Carbon 48:3103–3120CrossRef Lahiri D, Singh V, Keshri AK, Seal S, Agarwal A (2010) Carbon nanotube toughened hydroxyapatite by spark plasma sintering: microstructural evolution and multiscale tribological properties. Carbon 48:3103–3120CrossRef
89.
go back to reference Lei T, Wang L, Ouyang C, Li NF, Zhou LS (2011) In situ preparation and enhanced mechanical properties of carbon nanotube/hydroxyapatite composites. Int J Appl Ceram Technol 8:532–539CrossRef Lei T, Wang L, Ouyang C, Li NF, Zhou LS (2011) In situ preparation and enhanced mechanical properties of carbon nanotube/hydroxyapatite composites. Int J Appl Ceram Technol 8:532–539CrossRef
90.
go back to reference Guo S, Sivakumar R, Kagawa Y (2007) Multiwall carbon nanotube-SiO2 nanocomposites: sintering, elastic properties, and fracture toughness. Adv Eng Mater 9:84–87CrossRef Guo S, Sivakumar R, Kagawa Y (2007) Multiwall carbon nanotube-SiO2 nanocomposites: sintering, elastic properties, and fracture toughness. Adv Eng Mater 9:84–87CrossRef
91.
go back to reference Sun J, Gao L, Li W (2002) Colloidal processing of carbon nanotube/alumina composites. Chem Mater 14:5169–5172CrossRef Sun J, Gao L, Li W (2002) Colloidal processing of carbon nanotube/alumina composites. Chem Mater 14:5169–5172CrossRef
92.
go back to reference Anstis GR, Chantikul P, Lawn BR, Marshall DB (1981) A critical evaluation of indentation techniques for measuring fracture toughness: I, direct crack measurements. J Am Ceram Soc 64:533–538CrossRef Anstis GR, Chantikul P, Lawn BR, Marshall DB (1981) A critical evaluation of indentation techniques for measuring fracture toughness: I, direct crack measurements. J Am Ceram Soc 64:533–538CrossRef
93.
go back to reference Quinn GD, Bradt RC (2007) On the vickers indentation fracture toughness test. J Am Ceram Soc 90:673–680CrossRef Quinn GD, Bradt RC (2007) On the vickers indentation fracture toughness test. J Am Ceram Soc 90:673–680CrossRef
94.
go back to reference Jiang D, Thomson K, Kuntz JD, Ager JW, Mukherjee AK (2007) Effect of sintering temperature on a single-wall carbon nanotube-toughened alumina-based nanocomposite. Scr Mater 56:959–962CrossRef Jiang D, Thomson K, Kuntz JD, Ager JW, Mukherjee AK (2007) Effect of sintering temperature on a single-wall carbon nanotube-toughened alumina-based nanocomposite. Scr Mater 56:959–962CrossRef
95.
go back to reference Padture NP, Curtin WA (2008) Comment on “Effect of sintering temperature on a single-wall carbon nanotube-toughened alumina-based composite”. Scr Mater 58:989–990CrossRef Padture NP, Curtin WA (2008) Comment on “Effect of sintering temperature on a single-wall carbon nanotube-toughened alumina-based composite”. Scr Mater 58:989–990CrossRef
96.
go back to reference Jiang D, Mukherjee AK (2008) Response to comment on “Effect of sintering temperature on single-wall carbon nanotube toughened alumina-based nanocomposite”. Scr Mater 58: 991–993CrossRef Jiang D, Mukherjee AK (2008) Response to comment on “Effect of sintering temperature on single-wall carbon nanotube toughened alumina-based nanocomposite”. Scr Mater 58: 991–993CrossRef
97.
go back to reference Bakshi SR, Musaramthota V, Virzi DA, Keshri AK, Lahiri D, Singh V, Seal S, Agarwal A (2011) Spark plasma sintered tantalum carbide-carbon nanotube composite: effect of pressure, carbon nanotube length and dispersion technique on microstructure and mechanical properties. Mater Sci Eng A 528:2538–2547CrossRef Bakshi SR, Musaramthota V, Virzi DA, Keshri AK, Lahiri D, Singh V, Seal S, Agarwal A (2011) Spark plasma sintered tantalum carbide-carbon nanotube composite: effect of pressure, carbon nanotube length and dispersion technique on microstructure and mechanical properties. Mater Sci Eng A 528:2538–2547CrossRef
98.
go back to reference Nisar A, Ariharan S, Balani K (2016) Synergistic reinforcement of carbon nanotubes and silicon carbide for toughening tantalum carbide based ultrahigh temperature ceramic. J Mater Res 31:682–692CrossRef Nisar A, Ariharan S, Balani K (2016) Synergistic reinforcement of carbon nanotubes and silicon carbide for toughening tantalum carbide based ultrahigh temperature ceramic. J Mater Res 31:682–692CrossRef
99.
go back to reference Zapata-Solvas E, Poyato R, Gómez-García D, Domínguez-Rodríguez A, Radmilovic V, Padture NP (2008) Creep-resistant composites of alumina and single-wall carbon nanotubes. Appl Phys Lett 92:111912CrossRef Zapata-Solvas E, Poyato R, Gómez-García D, Domínguez-Rodríguez A, Radmilovic V, Padture NP (2008) Creep-resistant composites of alumina and single-wall carbon nanotubes. Appl Phys Lett 92:111912CrossRef
100.
go back to reference Zapata-Solvas E, Gómez-García D, Poyato R, Lee Z, Castillo-Rodríguez M, Domínguez-Rodríguez A, Radmilovic V, Padture NP (2010) Microstructural effects on the creep deformation of alumina/single-wall carbon nanotubes composites. J Am Ceram Soc 93:2042–2047 Zapata-Solvas E, Gómez-García D, Poyato R, Lee Z, Castillo-Rodríguez M, Domínguez-Rodríguez A, Radmilovic V, Padture NP (2010) Microstructural effects on the creep deformation of alumina/single-wall carbon nanotubes composites. J Am Ceram Soc 93:2042–2047
101.
go back to reference Daraktchiev M, Van de Moortèle B, Schaller R, Couteau E, Forró L (2005) Effects of carbon nanotubes on grain boundary sliding in zirconia polycrystals. Adv Mater 17:88–91CrossRef Daraktchiev M, Van de Moortèle B, Schaller R, Couteau E, Forró L (2005) Effects of carbon nanotubes on grain boundary sliding in zirconia polycrystals. Adv Mater 17:88–91CrossRef
102.
go back to reference Ionascu C, Schaller R (2006) Influence of carbon nanotubes and silicon carbide whiskers on the mechanical loss due to grain boundary sliding in 3-mol% yttria-stabilized tetragonal zirconia polycrystals. Mater Sci Eng A 442:175–178CrossRef Ionascu C, Schaller R (2006) Influence of carbon nanotubes and silicon carbide whiskers on the mechanical loss due to grain boundary sliding in 3-mol% yttria-stabilized tetragonal zirconia polycrystals. Mater Sci Eng A 442:175–178CrossRef
103.
go back to reference Mazaheri M, Mari D, Hesabi ZR, Schaller R, Fantozzi G (2011) Multi-walled carbon nanotube/nanostructured zirconia composites: outstanding mechanical properties in a wide range of temperature. Compos Sci Technol 71:939–945CrossRef Mazaheri M, Mari D, Hesabi ZR, Schaller R, Fantozzi G (2011) Multi-walled carbon nanotube/nanostructured zirconia composites: outstanding mechanical properties in a wide range of temperature. Compos Sci Technol 71:939–945CrossRef
104.
go back to reference An JW, You DH, Lim DS (2003) Tribological properties of hot-pressed alumina-CNT composites. Wear 255:677–681CrossRef An JW, You DH, Lim DS (2003) Tribological properties of hot-pressed alumina-CNT composites. Wear 255:677–681CrossRef
105.
go back to reference Ahmad I, Kennedy A, Zhu YQ (2010) Wear resistant properties of multi-walled carbon nanotubes reinforced Al2O3 nanocomposites. Wear 269:71–78CrossRef Ahmad I, Kennedy A, Zhu YQ (2010) Wear resistant properties of multi-walled carbon nanotubes reinforced Al2O3 nanocomposites. Wear 269:71–78CrossRef
106.
go back to reference Lim DS, You DH, Choi HJ, Lim SH, Jang H (2005) Effect of CNT distribution on tribological behavior of alumina-CNT composites. Wear 259:539–544CrossRef Lim DS, You DH, Choi HJ, Lim SH, Jang H (2005) Effect of CNT distribution on tribological behavior of alumina-CNT composites. Wear 259:539–544CrossRef
107.
go back to reference Zhai W, Srikanth N, Kong LB, Zhou K (2017) Carbon nanomaterials in tribology. Carbon 119:150–171CrossRef Zhai W, Srikanth N, Kong LB, Zhou K (2017) Carbon nanomaterials in tribology. Carbon 119:150–171CrossRef
108.
go back to reference Ni B, Sinnott SB (2001) Tribological properties of carbon nanotube bundles predicted from atomistic simulations. Surf Sci 487:87–96CrossRef Ni B, Sinnott SB (2001) Tribological properties of carbon nanotube bundles predicted from atomistic simulations. Surf Sci 487:87–96CrossRef
109.
go back to reference Balani K, Chen Y, Harimkar SP, Dahotre NB, Agarwal A (2007) Tribological behavior of plasma-sprayed carbon nanotube-reinforced hydroxyapatite coating in physiological solution. Acta Biomater 3:944–951CrossRef Balani K, Chen Y, Harimkar SP, Dahotre NB, Agarwal A (2007) Tribological behavior of plasma-sprayed carbon nanotube-reinforced hydroxyapatite coating in physiological solution. Acta Biomater 3:944–951CrossRef
110.
go back to reference Wells JK, Beaumont PWR (1985) Debonding and pull-out processes in fibrous composites. J Mater Sci 20:1275–1284CrossRef Wells JK, Beaumont PWR (1985) Debonding and pull-out processes in fibrous composites. J Mater Sci 20:1275–1284CrossRef
111.
go back to reference Suzuki T, Sato M, Sakai M (2011) Fiber pullout processes and mechanisms of a carbon fiber reinforced silicon nitride ceramic composite. J Mater Res 7:2869–2875CrossRef Suzuki T, Sato M, Sakai M (2011) Fiber pullout processes and mechanisms of a carbon fiber reinforced silicon nitride ceramic composite. J Mater Res 7:2869–2875CrossRef
112.
go back to reference Estili M, Kawasaki A (2010) Engineering strong intergraphene shear resistance in multi-walled carbon nanotubes and dramatic tensile improvements. Adv Mater 22:607–610CrossRef Estili M, Kawasaki A (2010) Engineering strong intergraphene shear resistance in multi-walled carbon nanotubes and dramatic tensile improvements. Adv Mater 22:607–610CrossRef
113.
go back to reference Estili M, Kawasaki A, Pittini-Yamada Y, Utke I, Michler J (2011) In situ characterization of tensile-bending load bearing ability of multi-walled carbon nanotubes in alumina-based nanocomposites. J Mater Chem 21:4272–4278CrossRef Estili M, Kawasaki A, Pittini-Yamada Y, Utke I, Michler J (2011) In situ characterization of tensile-bending load bearing ability of multi-walled carbon nanotubes in alumina-based nanocomposites. J Mater Chem 21:4272–4278CrossRef
114.
go back to reference Yamamoto G, Shirasu K, Hashida T, Takagi T, Suk JW, An J, Piner RD, Ruoff RS (2011) Nanotube fracture during the failure of carbon nanotube/alumina composites. Carbon 49: 3709–3716CrossRef Yamamoto G, Shirasu K, Hashida T, Takagi T, Suk JW, An J, Piner RD, Ruoff RS (2011) Nanotube fracture during the failure of carbon nanotube/alumina composites. Carbon 49: 3709–3716CrossRef
115.
go back to reference Padture NP (2009) Multifunctional composites of ceramics and single-walled carbon nanotubes. Adv Mater 21:1767–1770CrossRef Padture NP (2009) Multifunctional composites of ceramics and single-walled carbon nanotubes. Adv Mater 21:1767–1770CrossRef
116.
go back to reference Ahmad I, Unwin M, Cao H, Chen H, Zhao H, Kennedy A, Zhu YQ (2010) Multi-walled carbon nanotubes reinforced Al2O3 nanocomposites: mechanical properties and interfacial investigations. Compos Sci Technol 70:1199–1206CrossRef Ahmad I, Unwin M, Cao H, Chen H, Zhao H, Kennedy A, Zhu YQ (2010) Multi-walled carbon nanotubes reinforced Al2O3 nanocomposites: mechanical properties and interfacial investigations. Compos Sci Technol 70:1199–1206CrossRef
117.
go back to reference Fan JP, Zhuang DM, Zhao DQ, Zhang G, Wu MS, Wei F, Fan ZJ (2006) Toughening and reinforcing alumina matrix composite with single-wall carbon nanotubes. Appl Phys Lett 89:1–4 Fan JP, Zhuang DM, Zhao DQ, Zhang G, Wu MS, Wei F, Fan ZJ (2006) Toughening and reinforcing alumina matrix composite with single-wall carbon nanotubes. Appl Phys Lett 89:1–4
118.
go back to reference Li L, Li Y (2017) Development and trend of ceramic cutting tools from the perspective of mechanical processing. IOP Conf Ser Earth Environ Sci 94:012062CrossRef Li L, Li Y (2017) Development and trend of ceramic cutting tools from the perspective of mechanical processing. IOP Conf Ser Earth Environ Sci 94:012062CrossRef
119.
go back to reference Li K, Yang Y, Gu Z, Howe JY, Eres G, Zhang L, Li X, Pan Z (2014) Approaching carbon nanotube reinforcing limit in B4C matrix composites produced by chemical vapor infiltration. Adv Eng Mater 16:161–166CrossRef Li K, Yang Y, Gu Z, Howe JY, Eres G, Zhang L, Li X, Pan Z (2014) Approaching carbon nanotube reinforcing limit in B4C matrix composites produced by chemical vapor infiltration. Adv Eng Mater 16:161–166CrossRef
Metadata
Title
Development of Carbon Nanotube-Reinforced Ceramic Matrix Nanocomposites for Advanced Structural Applications
Authors
Luv Gurnani
Amartya Mukhopadhyay
Copyright Year
2020
DOI
https://doi.org/10.1007/978-3-030-16347-1_30

Premium Partners