Skip to main content
Top

2024 | OriginalPaper | Chapter

Development of Deep Reinforcement Learning Methodology for Co-bot Motion Learning

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Today, Korea is facing a time when it is essential to develop new manufacturing technologies and strategies to lead new changes, such as smart factories and manufacturing innovation 3.0, and achieve continuous development of the domestic manufacturing industry. Therefore, many manufacturing companies are promoting process automation using collaborative robots (co-bot) to respond to the paradigm of multi-item, small-volume production. The emergence of co-bots improves the space utilization of production facilities and opens up the possibility of introducing robots without modifying the existing production line. This study aims to conduct primary research on a robot that recognizes and acts on its environment using reinforcement learning to determine its work movements and perform tasks without specific instructions from human experts. In this study, we propose a collaborative robot control methodology using a deep reinforcement learning algorithm. In addition, for the practical application of the HRC system, which is challenging to apply to the production of a single product, the problem of data sharing between collaborative robots and workers based on a process model was addressed. The system proposed in this study is designed to optimize process variables through artificial intelligence-based data learning and is expected to contribute to product and process quality optimization of human-robot collaborative processes in the future.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Kim, H., Doh, H., Yu, J., Lee, D.: A case study on capacitated lot-sizing and scheduling in a paper remanufacturing system. J. Soc. Korea Ind. Syst. Eng. 35(3), 77–86 (2008) Kim, H., Doh, H., Yu, J., Lee, D.: A case study on capacitated lot-sizing and scheduling in a paper remanufacturing system. J. Soc. Korea Ind. Syst. Eng. 35(3), 77–86 (2008)
2.
go back to reference Hahm, H.: A study of smart factory policy for ICT-based. e-Bus. Study 18(6), 363–380 (2017) Hahm, H.: A study of smart factory policy for ICT-based. e-Bus. Study 18(6), 363–380 (2017)
3.
go back to reference Lee, J., Shin, M.: Research trends of scheduling techniques in Korea. In: The 2015 KIIE Joint Spring Conference, vol. 2015, no. 1, pp. 2095–2102 (2015) Lee, J., Shin, M.: Research trends of scheduling techniques in Korea. In: The 2015 KIIE Joint Spring Conference, vol. 2015, no. 1, pp. 2095–2102 (2015)
6.
go back to reference Jung, J.: Understanding collaborative robots and human-robot collaboration. Inst. Control Robot. Syst. 27(3), 23–28 (2021) Jung, J.: Understanding collaborative robots and human-robot collaboration. Inst. Control Robot. Syst. 27(3), 23–28 (2021)
7.
go back to reference Jung, D., Kang, S., Kim, H.: Collaborative robot system for shipbuilding block welding. In: 2022 ICROS Annual Conference, pp. 79–81 (2022) Jung, D., Kang, S., Kim, H.: Collaborative robot system for shipbuilding block welding. In: 2022 ICROS Annual Conference, pp. 79–81 (2022)
8.
go back to reference Ministry of SMEs and Startups: Small and medium business technology roadmap (2022) Ministry of SMEs and Startups: Small and medium business technology roadmap (2022)
9.
go back to reference Lee, S., Kim, D., Jung, J.: ROBOPPRESSO: design and implementation of robot-barista services using COBOT and IoT. J. Inst. Internet Broadcast. Commun. 21(2), 177–186 (2021) Lee, S., Kim, D., Jung, J.: ROBOPPRESSO: design and implementation of robot-barista services using COBOT and IoT. J. Inst. Internet Broadcast. Commun. 21(2), 177–186 (2021)
10.
go back to reference LeCun, Y., et al.: Backpropagation applied to handwritten zip code recognition. Neural Comput. 1(4), 541–551 (1989)CrossRef LeCun, Y., et al.: Backpropagation applied to handwritten zip code recognition. Neural Comput. 1(4), 541–551 (1989)CrossRef
11.
go back to reference Lowe, D.G.: Object recognition from local scale-invariant features. In: ICCV, vol. 99, no. 2, pp. 1150–1157 (1999) Lowe, D.G.: Object recognition from local scale-invariant features. In: ICCV, vol. 99, no. 2, pp. 1150–1157 (1999)
12.
go back to reference Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 779–788 (2016) Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 779–788 (2016)
13.
go back to reference Chen, J.X.: The evolution of computing: AlphaGo. Comput. Sci. Eng. 18(4), 4–7 (2016)CrossRef Chen, J.X.: The evolution of computing: AlphaGo. Comput. Sci. Eng. 18(4), 4–7 (2016)CrossRef
14.
go back to reference Guo, X., Singh, S., Lee, H., Lewis, R.L., Wang, X.: Deep learning for real-time Atari game play using offline Monte-Carlo tree search planning. In: Advances in Neural Information Processing Systems, vol. 27 (2014) Guo, X., Singh, S., Lee, H., Lewis, R.L., Wang, X.: Deep learning for real-time Atari game play using offline Monte-Carlo tree search planning. In: Advances in Neural Information Processing Systems, vol. 27 (2014)
15.
go back to reference Arulkumaran, K., Deisenroth, M.P., Brundage, M., Bharath, A.A.: Deep reinforcement learning: a brief survey. IEEE Signal Process. Mag. 34(6), 26–38 (2017)CrossRef Arulkumaran, K., Deisenroth, M.P., Brundage, M., Bharath, A.A.: Deep reinforcement learning: a brief survey. IEEE Signal Process. Mag. 34(6), 26–38 (2017)CrossRef
Metadata
Title
Development of Deep Reinforcement Learning Methodology for Co-bot Motion Learning
Authors
Siku Kim
Kwangyeol Ryu
Copyright Year
2024
DOI
https://doi.org/10.1007/978-3-031-38165-2_58

Premium Partner