Skip to main content
Top
Published in:

01-05-2019 | ORIGINAL PAPER

Development of high-performance polymer membranes for CO2 separation by combining functionalities of polyvinyl alcohol (PVA) and sodium polyacrylate (PAANa)

Authors: Fuminori Ito, Yuriko Nishiyama, Shuhong Duan, Hidetaka Yamada

Published in: Journal of Polymer Research | Issue 5/2019

Login to get access

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In the present study, integrated polymers having gas barrier and water sorption properties were prepared by effectively blending two types of polymers to fabricate membranes for high-performance CO2 separation. Namely, composite polymers were prepared as a new membrane material by uniformly blending polyvinyl alcohol (PVA), a gas barrier polymer, with sodium polyacrylate (PAANa), a water-absorbing polymer. The optimal PVA/PAANa blending ratio was determined by evaluating the thermal properties of the prepared polymer blend and the CO2 separation performance of the polymer blend membrane. When amine type additives such as polyamidoamine (PAMAM) dendrimer or polyallylamine (PAAm) were added to the prepared PVA/PAANa, the separation performance of the produced separation membrane increased. Applying a carbonate coating onto the PVA/PAANa membranes containing additives further increased the separation performance and selectivity of the membranes. These results demonstrated that the PVA/PAANa membranes prepared in this study, which featured both gas barrier and water absorption properties, could be used as high-performance membrane materials for CO2 separation.

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Duan S, Kouketsu T, Kazama S, Yamada K (2006) Development of PAMAM dendrimer composite membranes for CO2 separation. J Membrane Sci 283:2–6CrossRef Duan S, Kouketsu T, Kazama S, Yamada K (2006) Development of PAMAM dendrimer composite membranes for CO2 separation. J Membrane Sci 283:2–6CrossRef
2.
go back to reference Minelli M, Medri V, Papa E, Miccio F, Landi E (2016) Geopolymers as solid adsorbent for CO2 capture. Chemical Eng Sci 148:267–274CrossRef Minelli M, Medri V, Papa E, Miccio F, Landi E (2016) Geopolymers as solid adsorbent for CO2 capture. Chemical Eng Sci 148:267–274CrossRef
3.
go back to reference Muchan P, Saiwan C, Narku-Tetteh J, Idem R, Supap T, Tontiwachwuthikui P (2016) Screening tests of aqueous alkanolamine solutions based on primary, secondary, and tertiary structure for blended aqueous amine solution selection in post combustion CO2 capture. Chemical Eng Sci 170:574–582CrossRef Muchan P, Saiwan C, Narku-Tetteh J, Idem R, Supap T, Tontiwachwuthikui P (2016) Screening tests of aqueous alkanolamine solutions based on primary, secondary, and tertiary structure for blended aqueous amine solution selection in post combustion CO2 capture. Chemical Eng Sci 170:574–582CrossRef
4.
go back to reference Kai T, Taniguchi I, Duan S, Chowdhury FA, Saito T, Yamazaki K, Ikeda K, Ohara T, Asano S, Kazama S (2013) Molecular gate membrane: poly (amidoamine) dendrimer/polymer hybrid membrane modules for CO2 capture. Energy Procedia 37:961–968CrossRef Kai T, Taniguchi I, Duan S, Chowdhury FA, Saito T, Yamazaki K, Ikeda K, Ohara T, Asano S, Kazama S (2013) Molecular gate membrane: poly (amidoamine) dendrimer/polymer hybrid membrane modules for CO2 capture. Energy Procedia 37:961–968CrossRef
5.
go back to reference Duan S, Taniguchi I, Kai T, Kazama S (2012) Poly (amidoamine) dendrimer/poly (vinyl alcohol) hybrid membranes for CO2 capture. J Membrane Sci 423–424:107–112CrossRef Duan S, Taniguchi I, Kai T, Kazama S (2012) Poly (amidoamine) dendrimer/poly (vinyl alcohol) hybrid membranes for CO2 capture. J Membrane Sci 423–424:107–112CrossRef
6.
go back to reference Duan S, Taniguchi I, Kai T, Kazama S (2013) Development of poly (amidoamine) dendrimer/polyvinyl alcohol hybrid membranes for CO2 capture at elevated pressures. Energy Procedia 37:924–931CrossRef Duan S, Taniguchi I, Kai T, Kazama S (2013) Development of poly (amidoamine) dendrimer/polyvinyl alcohol hybrid membranes for CO2 capture at elevated pressures. Energy Procedia 37:924–931CrossRef
7.
go back to reference Duan S, Chowdhury FA, Kai T, Kazama S, Fujioka Y (2008) PAMAM dendrimer composite membrane for CO2 separation: addition of hyaluronic acid in gutter layer and application of novel hydroxyl PAMAM dendrimer. Desalination 234:278–285CrossRef Duan S, Chowdhury FA, Kai T, Kazama S, Fujioka Y (2008) PAMAM dendrimer composite membrane for CO2 separation: addition of hyaluronic acid in gutter layer and application of novel hydroxyl PAMAM dendrimer. Desalination 234:278–285CrossRef
8.
go back to reference Car A, Stropnik C, Yave W, Peinemann K-V (2008) PEG modified poly (amide-b-ethylene oxide) membranes for CO2 separation. J Membrane Sci 307:88–95CrossRef Car A, Stropnik C, Yave W, Peinemann K-V (2008) PEG modified poly (amide-b-ethylene oxide) membranes for CO2 separation. J Membrane Sci 307:88–95CrossRef
9.
go back to reference Taniguchi I, Kai T, Duan S, Kazama S, Jinnai H (2015) A compatible crosslinker for enhancement of CO2 capture of poly (amidoamine) dendrimer-containing polymeric membranes. J Membrane Sci 475:175–183CrossRef Taniguchi I, Kai T, Duan S, Kazama S, Jinnai H (2015) A compatible crosslinker for enhancement of CO2 capture of poly (amidoamine) dendrimer-containing polymeric membranes. J Membrane Sci 475:175–183CrossRef
10.
go back to reference Guerrero G, Venturi D, Peters T, Rival N, Denonville C, Simon C, Henriksen PP, Hägg M-B (2017) Influence of functionalized nanoparticles on the CO2/N2 separation properties of PVA-based gas separation membranes. Energy Procedia 114:627–635CrossRef Guerrero G, Venturi D, Peters T, Rival N, Denonville C, Simon C, Henriksen PP, Hägg M-B (2017) Influence of functionalized nanoparticles on the CO2/N2 separation properties of PVA-based gas separation membranes. Energy Procedia 114:627–635CrossRef
11.
go back to reference Yang H, Xu Z, Fan M, Gupta R, Slimane RB, Bland AE, Wright I (2008) Progress in carbon dioxide separation and capture: A review. J Environmental Sci 20:14–27CrossRef Yang H, Xu Z, Fan M, Gupta R, Slimane RB, Bland AE, Wright I (2008) Progress in carbon dioxide separation and capture: A review. J Environmental Sci 20:14–27CrossRef
12.
go back to reference Olajire AA (2010) CO2 capture and separation technology for end-of-pipe applications – a review. Energy 35:2610–2628CrossRef Olajire AA (2010) CO2 capture and separation technology for end-of-pipe applications – a review. Energy 35:2610–2628CrossRef
13.
go back to reference D’Alesssandro DM, Smit B, Long JR (2010) Carbon dioxide capture: prospects for new materials. Angew Chem 49:6058–6082CrossRef D’Alesssandro DM, Smit B, Long JR (2010) Carbon dioxide capture: prospects for new materials. Angew Chem 49:6058–6082CrossRef
14.
go back to reference Brunetti A, Scura F, Barbieri G, Drioli E (2010) Membrane technologies for CO2 separation. J Membrane Sci 359:115–125CrossRef Brunetti A, Scura F, Barbieri G, Drioli E (2010) Membrane technologies for CO2 separation. J Membrane Sci 359:115–125CrossRef
15.
go back to reference Luis P, Gerven TV, Bruggen BVD (2012) Recent developments in membrane-based technologies for CO2 capture. Prog Energy Combust Sci 38:419–448CrossRef Luis P, Gerven TV, Bruggen BVD (2012) Recent developments in membrane-based technologies for CO2 capture. Prog Energy Combust Sci 38:419–448CrossRef
16.
go back to reference Kouketsu T, Duan S, Kai T, Kazama S, Yamada K (2007) PAMAM dendrimer composite membrane for CO2 separation: formation of a chitosan gutter layer. J Membrane Sci 287:51–59CrossRef Kouketsu T, Duan S, Kai T, Kazama S, Yamada K (2007) PAMAM dendrimer composite membrane for CO2 separation: formation of a chitosan gutter layer. J Membrane Sci 287:51–59CrossRef
17.
go back to reference Duan S, Kai T, Taniguchi I, Kazama S (2014) Development of poly (amidoamine) dendrimer/poly(ethyleneglycol) hybrid membranes for CO2 capture at elevated pressures. Energy Procedia 63:167–173CrossRef Duan S, Kai T, Taniguchi I, Kazama S (2014) Development of poly (amidoamine) dendrimer/poly(ethyleneglycol) hybrid membranes for CO2 capture at elevated pressures. Energy Procedia 63:167–173CrossRef
18.
go back to reference Duan S, Kai T, Saito T, Yamazaki K, Ikeda K (2014) Effect of cross-linking on the mechanical and thermal properties of poly(amidoamine) dendrimer/poly(vinyl alcohol) hybrid membranes for CO2 separation. Membranes 4:200–209CrossRef Duan S, Kai T, Saito T, Yamazaki K, Ikeda K (2014) Effect of cross-linking on the mechanical and thermal properties of poly(amidoamine) dendrimer/poly(vinyl alcohol) hybrid membranes for CO2 separation. Membranes 4:200–209CrossRef
19.
go back to reference Yegani R, Hirozawa H, Teramoto M, Himei H, Okada O, Takigawa T, Ohmura N, Matsumiya N, Matsuyama H (2007) Selective separation of CO2 by using novel facilitated transport membrane at elevated temperature and pressures. J Membrane Sci 291:157–164CrossRef Yegani R, Hirozawa H, Teramoto M, Himei H, Okada O, Takigawa T, Ohmura N, Matsumiya N, Matsuyama H (2007) Selective separation of CO2 by using novel facilitated transport membrane at elevated temperature and pressures. J Membrane Sci 291:157–164CrossRef
20.
go back to reference Uemoto T, Sugiura K, Okada O, Nonouchi T, Ito F, Akiyama K, Matsuda K (2013) Proposition of CO2 removable technology using membrane for Hydrogen Station. ECS Trans 51(1):259–264CrossRef Uemoto T, Sugiura K, Okada O, Nonouchi T, Ito F, Akiyama K, Matsuda K (2013) Proposition of CO2 removable technology using membrane for Hydrogen Station. ECS Trans 51(1):259–264CrossRef
22.
go back to reference Cui Y, Kumar S, Kona BR, Houcke DV (2015) Gas barrier properties of polymer/clay nanocomposites. RSC Adv 5:63669–63690CrossRef Cui Y, Kumar S, Kona BR, Houcke DV (2015) Gas barrier properties of polymer/clay nanocomposites. RSC Adv 5:63669–63690CrossRef
23.
go back to reference Adewole JK, Ahmad AL (2017) Polymeric membrane materials selection for high-pressure CO2 removal from natural gas. J Polym Res 24:70–82CrossRef Adewole JK, Ahmad AL (2017) Polymeric membrane materials selection for high-pressure CO2 removal from natural gas. J Polym Res 24:70–82CrossRef
Metadata
Title
Development of high-performance polymer membranes for CO2 separation by combining functionalities of polyvinyl alcohol (PVA) and sodium polyacrylate (PAANa)
Authors
Fuminori Ito
Yuriko Nishiyama
Shuhong Duan
Hidetaka Yamada
Publication date
01-05-2019
Publisher
Springer Netherlands
Published in
Journal of Polymer Research / Issue 5/2019
Print ISSN: 1022-9760
Electronic ISSN: 1572-8935
DOI
https://doi.org/10.1007/s10965-019-1769-6

Other articles of this Issue 5/2019

Journal of Polymer Research 5/2019 Go to the issue

Premium Partners