Skip to main content
Top

2018 | OriginalPaper | Chapter

Development of New Alloy 718 with Super Machinability

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Alloy 718 has been applied in a lot of applications such as aerospace, power generation plant, automobile and Oil & Gas. Most products of Alloy 718 are finally produced by machining process because there are a lot of complex product shapes. Therefore, improvement of the machinability can contribute to the manufacturability. One of the important factors for the machinability is large carbide because carbide has very high hardness. Distribution and size of carbides strongly influence on cutting tool life. New developed Alloy 718 has low carbon content to suppress the formation of NbC type carbides. Developed alloy extremely improves turning tool life in comparison with conventional Alloy 718. Moreover, developed alloy satisfies chemical compositions and mechanical properties of AMS 5663N and API 6ACRA.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Narutaki N (1992) Machining of difficult-to-cut materials. J Jpn Soc Precis Eng 58(12):1949–1952CrossRef Narutaki N (1992) Machining of difficult-to-cut materials. J Jpn Soc Precis Eng 58(12):1949–1952CrossRef
2.
go back to reference Itakura K et al (2000) High speed cutting of super heat resisting alloy Inconel 718. J Jpn Soc Precis Eng 66(10):1611–1615CrossRef Itakura K et al (2000) High speed cutting of super heat resisting alloy Inconel 718. J Jpn Soc Precis Eng 66(10):1611–1615CrossRef
3.
go back to reference Sugino A et al (2011) High efficiency cutting of super heat resistant alloy. Denki Seiko Electr Furn Steel 82(2):165–169 Sugino A et al (2011) High efficiency cutting of super heat resistant alloy. Denki Seiko Electr Furn Steel 82(2):165–169
4.
go back to reference Takeyama H et al (1989) Study on machinability characteristics of heat-resistant alloys and adaptability of tool materials. J Jpn Soc Precis Eng 55(8):1481–1486CrossRef Takeyama H et al (1989) Study on machinability characteristics of heat-resistant alloys and adaptability of tool materials. J Jpn Soc Precis Eng 55(8):1481–1486CrossRef
5.
go back to reference Ezugwu EO et al (2005) Modelling the correlation between cutting and process parameters in high-speed machining of Inconel 718 alloy using an artificial neural network. Int J Mach Tool Manuf 45:1375–1385CrossRef Ezugwu EO et al (2005) Modelling the correlation between cutting and process parameters in high-speed machining of Inconel 718 alloy using an artificial neural network. Int J Mach Tool Manuf 45:1375–1385CrossRef
6.
go back to reference Sato T et al (1959) A study on hardness of carbides in iron and steel. J Jpn Inst Met 23(7):403–407CrossRef Sato T et al (1959) A study on hardness of carbides in iron and steel. J Jpn Inst Met 23(7):403–407CrossRef
7.
go back to reference Maekawa K et al (1988) Study on analytical prediction of cutting tool life (5th report)—analytical prediction of flank wear. J Jpn Soc Precis Eng 54(02):346–352CrossRef Maekawa K et al (1988) Study on analytical prediction of cutting tool life (5th report)—analytical prediction of flank wear. J Jpn Soc Precis Eng 54(02):346–352CrossRef
8.
go back to reference Usui E et al (1975) Numerical analysis of temperature distribution in three dimensional metal cutting. Seimitsu Kikai 41(491):1141–1146 Usui E et al (1975) Numerical analysis of temperature distribution in three dimensional metal cutting. Seimitsu Kikai 41(491):1141–1146
9.
go back to reference Shirakashi T et al (1973) Friction characteristics on tool face in metal machining. Seimitsu Kikai 39(464):966–972 Shirakashi T et al (1973) Friction characteristics on tool face in metal machining. Seimitsu Kikai 39(464):966–972
10.
go back to reference Takeyama H et al (1961) Temperature dependence of tool wear. Seimitsu Kikai 27(312):33–38 Takeyama H et al (1961) Temperature dependence of tool wear. Seimitsu Kikai 27(312):33–38
11.
go back to reference Eiselstein HL (1965) Advances in the technology of stainless steels and related alloys, STP 369, ASTM, Philadelphia, PA, pp 62–67 Eiselstein HL (1965) Advances in the technology of stainless steels and related alloys, STP 369, ASTM, Philadelphia, PA, pp 62–67
Metadata
Title
Development of New Alloy 718 with Super Machinability
Authors
Chihiro Furusho
Yuya Kousai
Mototsugu Osaki
Koichi Uno
Copyright Year
2018
DOI
https://doi.org/10.1007/978-3-319-89480-5_71

Premium Partners