Skip to main content
Top

2019 | OriginalPaper | Chapter

14. Development of Polymer Electrolyte Membranes for Solid Alkaline Fuel Cells

Authors : Shoji Miyanishi, Takeo Yamaguchi

Published in: Nanocarbons for Energy Conversion: Supramolecular Approaches

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Solid-state alkaline fuel cells (SAFCs), which use anion-exchange membranes (AEMs), offer several advantages over prevailing proton exchange membrane fuel cells (PEMFCs), namely higher reaction kinetics for fuel oxidation and a less corrosive environment that allows for the application of a variety of cheap metals and carbon-alloy catalysts. This promising technology has the potential to overcome many problems linked with PEMFC via the construction of low-cost, high-energy density conversion devices. In addition, a vast range of liquid fuel types are available to be used by the catalyst design incorporated in this technology. Unfortunately, the development of high-performance membranes remains a key issue for real-world application of these types of systems. Currently, AEMs encounter the following two major challenges:
  • The ion conductivity of the current membrane is low. Most highly conductive membranes are highly water-absorbable, and thus do not have considerable dimensional stability.
  • Relatively low chemical stability of both the backbone and anion-exchange groups in the membrane.
Alkaline stability of AEM is significantly important for the long-term operation of any device using this technology. As such, issues surrounding the mechanisms by which degradation occurs, its material design, and the technology associated with this degradation problem often present themselves as major hurdles in the advancement of AEMs. This entry reviews recent developments in the field aimed at overcoming these problems.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Varcoe JR, Slade RCT (2005) Prospects for alkaline anion-exchange membranes in low temperature fuel cells. Fuel cells 5:187–200CrossRef Varcoe JR, Slade RCT (2005) Prospects for alkaline anion-exchange membranes in low temperature fuel cells. Fuel cells 5:187–200CrossRef
2.
go back to reference Merle G, Wessling M, Nijmeijer K (2011) Anion exchange membranes for alkaline fuel cells: a review. J Membr Sci 377:1–35CrossRef Merle G, Wessling M, Nijmeijer K (2011) Anion exchange membranes for alkaline fuel cells: a review. J Membr Sci 377:1–35CrossRef
3.
go back to reference Hickner MA, Herring AM, Coughlin EB (2013) Anion exchange membranes: current status and moving forward. J Polym Sci Part B: Polym Phys 51:1727–1735CrossRef Hickner MA, Herring AM, Coughlin EB (2013) Anion exchange membranes: current status and moving forward. J Polym Sci Part B: Polym Phys 51:1727–1735CrossRef
4.
go back to reference Cheng J, He G, Zhang F (2015) A mini-review on anion exchange membranes for fuel cell applications: stability issue and addressing strategies. Inter J Hydrogen Energy 40:7348–7360CrossRef Cheng J, He G, Zhang F (2015) A mini-review on anion exchange membranes for fuel cell applications: stability issue and addressing strategies. Inter J Hydrogen Energy 40:7348–7360CrossRef
5.
go back to reference Maurya S, Shin SH, Kim Y, Moon SH (2015) A review on recent developments of anion exchange membranes for fuel cells and redox flow batteries. RSC Adv 5:37206–37230CrossRef Maurya S, Shin SH, Kim Y, Moon SH (2015) A review on recent developments of anion exchange membranes for fuel cells and redox flow batteries. RSC Adv 5:37206–37230CrossRef
6.
go back to reference Zhang H, Ohashi H, Tamaki T, Yamaguchi T (2012) Direction and management of water movement in solid-state alkaline fuel cells. J Phys Chem C 116:7650–7657CrossRef Zhang H, Ohashi H, Tamaki T, Yamaguchi T (2012) Direction and management of water movement in solid-state alkaline fuel cells. J Phys Chem C 116:7650–7657CrossRef
7.
go back to reference Zhang H, Ohashi H, Tamaki T, Yamaguchi T (2013) Water movement in a solid-state alkaline fuel cell affected by the anion-exchange pore-filling membrane properties. J Phys Chem C 117:16791–16801CrossRef Zhang H, Ohashi H, Tamaki T, Yamaguchi T (2013) Water movement in a solid-state alkaline fuel cell affected by the anion-exchange pore-filling membrane properties. J Phys Chem C 117:16791–16801CrossRef
8.
go back to reference Oshiba Y, Hiura J, Suzuki Y, Yamaguchi T (2017) Improvement in the solid-state alkaline fuel cell performance through efficient water management strategies. J Power Sources 345:221–226CrossRef Oshiba Y, Hiura J, Suzuki Y, Yamaguchi T (2017) Improvement in the solid-state alkaline fuel cell performance through efficient water management strategies. J Power Sources 345:221–226CrossRef
9.
go back to reference Lu S, Pan J, Huang A, Zhuang L, Lu J (2008) Alkaline polymer electrolyte fuel cells completely free from noble metal catalysts. Proc Natl Acad Sci 105:20611–20614CrossRef Lu S, Pan J, Huang A, Zhuang L, Lu J (2008) Alkaline polymer electrolyte fuel cells completely free from noble metal catalysts. Proc Natl Acad Sci 105:20611–20614CrossRef
10.
go back to reference Gong K, Du F, Xia Z, Durstock M, Dai L (2009) Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 323:760–764CrossRef Gong K, Du F, Xia Z, Durstock M, Dai L (2009) Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 323:760–764CrossRef
11.
go back to reference Qu L, Liu Y, Baek JB, Dai L (2010) Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells. ACS Nano 4:1321–1326CrossRef Qu L, Liu Y, Baek JB, Dai L (2010) Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells. ACS Nano 4:1321–1326CrossRef
12.
go back to reference Li X, Popov BN, Kawahara T, Yanagi H (2011) Non-precious metal catalysts synthesized from precursors of carbon, nitrogen, and transition metal for oxygen reduction in alkaline fuel cells. J Power Sources 196:1717–1722CrossRef Li X, Popov BN, Kawahara T, Yanagi H (2011) Non-precious metal catalysts synthesized from precursors of carbon, nitrogen, and transition metal for oxygen reduction in alkaline fuel cells. J Power Sources 196:1717–1722CrossRef
13.
go back to reference Matsuoka K, Iriyama Y, Abe T, Matusoka M, Ogumi Z (2005) Alkaline direct alcohol fuel cells using an anion exchange membrane. J Power Sources 150:27–31CrossRef Matsuoka K, Iriyama Y, Abe T, Matusoka M, Ogumi Z (2005) Alkaline direct alcohol fuel cells using an anion exchange membrane. J Power Sources 150:27–31CrossRef
14.
go back to reference Bambagioni V, Bianchini C, Marchionni A, Filippi J, Vizza F, Teddy J, Serp P, Zhiani M (2009) Pd and Pt–Ru anode electrocatalysts supported on multi-walled carbon nanotubes and their use in passive and active direct alcohol fuel cells with an anion-exchange membrane (alcohol = methanol, ethanol, glycerol). J Power Sources 190:241–251CrossRef Bambagioni V, Bianchini C, Marchionni A, Filippi J, Vizza F, Teddy J, Serp P, Zhiani M (2009) Pd and Pt–Ru anode electrocatalysts supported on multi-walled carbon nanotubes and their use in passive and active direct alcohol fuel cells with an anion-exchange membrane (alcohol = methanol, ethanol, glycerol). J Power Sources 190:241–251CrossRef
15.
go back to reference Li L, Wang YX (2005) Quaternized polyethersulfone Cardo anion exchange membranes for direct methanol alkaline fuel cells. J Membr Sci 262:1–4CrossRef Li L, Wang YX (2005) Quaternized polyethersulfone Cardo anion exchange membranes for direct methanol alkaline fuel cells. J Membr Sci 262:1–4CrossRef
16.
go back to reference Hou HY, Sun GQ, He RH, Wu ZM, Sun BY (2008) Alkali doped polybenzimidazole membrane for high performance alkaline direct ethanol fuel cell. J Power Sources 182:95–99CrossRef Hou HY, Sun GQ, He RH, Wu ZM, Sun BY (2008) Alkali doped polybenzimidazole membrane for high performance alkaline direct ethanol fuel cell. J Power Sources 182:95–99CrossRef
17.
go back to reference Tanaka M, Fukasawa K, Nishino E, Yamaguchi S, Yamada K, Tanaka H, Bae B, Miyatake K, Watanabe M (2011) Anion conductive block poly(arylene ether)s: synthesis, properties, and application in alkaline fuel cells. J Am Chem Soc 133:10646–10654CrossRef Tanaka M, Fukasawa K, Nishino E, Yamaguchi S, Yamada K, Tanaka H, Bae B, Miyatake K, Watanabe M (2011) Anion conductive block poly(arylene ether)s: synthesis, properties, and application in alkaline fuel cells. J Am Chem Soc 133:10646–10654CrossRef
18.
go back to reference Lan R, Tao SW (2010) Direct ammonia alkaline anion-exchange membrane fuel cells. Electrochem Solid State Lett 13:B83–B86CrossRef Lan R, Tao SW (2010) Direct ammonia alkaline anion-exchange membrane fuel cells. Electrochem Solid State Lett 13:B83–B86CrossRef
19.
go back to reference Bartrom AM, Haan JL (2012) The direct formate fuel cell with an alkaline anion exchange membrane. J Power Sources 214:68–74CrossRef Bartrom AM, Haan JL (2012) The direct formate fuel cell with an alkaline anion exchange membrane. J Power Sources 214:68–74CrossRef
20.
go back to reference Matsui K, Tobita E, Sugimoto K, Kondo K, Seita T, Akimoto A (1986) Novel anion exchange membranes having fluorocarbon backbone: preparation and stability. Appl Polym Sci 32:4137–4143CrossRef Matsui K, Tobita E, Sugimoto K, Kondo K, Seita T, Akimoto A (1986) Novel anion exchange membranes having fluorocarbon backbone: preparation and stability. Appl Polym Sci 32:4137–4143CrossRef
21.
go back to reference Vinodh R, Ilakkiya A, Elamathi S, Sangeetha D (2010) A novel anion exchange membrane from polystyrene (ethylene butylene) polystyrene: synthesis and characterization. Mater Sci Eng B 167:43–50CrossRef Vinodh R, Ilakkiya A, Elamathi S, Sangeetha D (2010) A novel anion exchange membrane from polystyrene (ethylene butylene) polystyrene: synthesis and characterization. Mater Sci Eng B 167:43–50CrossRef
22.
go back to reference Zeng QH, Liu QL, Broadwell I, Zhu AM, Xing YX, Tu P (2010) Anion exchange membranes based on quaternized polystyrene-block-poly(ethylene-ran-butylene)-block-polystyrene for direct methanol alkaline fuel cells. J Membr Sci 349:237–243CrossRef Zeng QH, Liu QL, Broadwell I, Zhu AM, Xing YX, Tu P (2010) Anion exchange membranes based on quaternized polystyrene-block-poly(ethylene-ran-butylene)-block-polystyrene for direct methanol alkaline fuel cells. J Membr Sci 349:237–243CrossRef
23.
go back to reference Kumar M, Singh S, Shahi VK (2010) Cross-linked poly(vinyl alcohol)−poly(acrylonitrile-co-2-dimethylamino ethylmethacrylate) based anion-exchange membranes in aqueous media. J Phys Chem B 114:198–206CrossRef Kumar M, Singh S, Shahi VK (2010) Cross-linked poly(vinyl alcohol)−poly(acrylonitrile-co-2-dimethylamino ethylmethacrylate) based anion-exchange membranes in aqueous media. J Phys Chem B 114:198–206CrossRef
24.
go back to reference Xiong Y, Fang J, Zeng QH, Liu QL (2008) Preparation and characterization of cross-linked quaternized poly(vinyl alcohol) membranes for anion exchange membrane fuel cells. J Membr Sci 311:319–325CrossRef Xiong Y, Fang J, Zeng QH, Liu QL (2008) Preparation and characterization of cross-linked quaternized poly(vinyl alcohol) membranes for anion exchange membrane fuel cells. J Membr Sci 311:319–325CrossRef
25.
go back to reference Xiong Y, Liu QL, Zhang QG, Zhu AM (2008) Synthesis and characterization of cross-linked quaternized poly(vinyl alcohol)/chitosan composite anion exchange membranes for fuel cells. J Power Sources 183:447–453CrossRef Xiong Y, Liu QL, Zhang QG, Zhu AM (2008) Synthesis and characterization of cross-linked quaternized poly(vinyl alcohol)/chitosan composite anion exchange membranes for fuel cells. J Power Sources 183:447–453CrossRef
26.
go back to reference Zhamg M, Kim HK, Chalkova E, Mark F, Lvov SN, Chung TCM (2011) New polyethylene based anion exchange membranes (PE–AEMs) with high ionic conductivity. Macromolecules 44:5937–5946CrossRef Zhamg M, Kim HK, Chalkova E, Mark F, Lvov SN, Chung TCM (2011) New polyethylene based anion exchange membranes (PE–AEMs) with high ionic conductivity. Macromolecules 44:5937–5946CrossRef
27.
go back to reference Varcoe JR, Slade RCT, Yee ELH, Poynton SD, Driscoll DJ, Apperley DC (2007) Poly(ethylene-co-tetrafluoroethylene)-derived radiation-grafted anion-exchange membrane with properties specifically tailored for application in metal-cation-free alkaline polymer electrolyte fuel cells. Chem Mater 19:2686–2693CrossRef Varcoe JR, Slade RCT, Yee ELH, Poynton SD, Driscoll DJ, Apperley DC (2007) Poly(ethylene-co-tetrafluoroethylene)-derived radiation-grafted anion-exchange membrane with properties specifically tailored for application in metal-cation-free alkaline polymer electrolyte fuel cells. Chem Mater 19:2686–2693CrossRef
28.
go back to reference Zhang H, Shen PK (2012) Recent development of polymer electrolyte membranes for fuel cells. Chem Rev 112:2780–2832CrossRef Zhang H, Shen PK (2012) Recent development of polymer electrolyte membranes for fuel cells. Chem Rev 112:2780–2832CrossRef
29.
go back to reference John J, Hugar KM, Rivera-Meléndez J, Kostalik HA IV, Rus ED, Wang H, Coates GW, Abruña HD (2014) An electrochemical quartz crystal microbalance study of a prospective alkaline anion exchange membrane material for fuel cells: anion exchange dynamics and membrane swelling. J Am Chem Soc 136:5309–5322CrossRef John J, Hugar KM, Rivera-Meléndez J, Kostalik HA IV, Rus ED, Wang H, Coates GW, Abruña HD (2014) An electrochemical quartz crystal microbalance study of a prospective alkaline anion exchange membrane material for fuel cells: anion exchange dynamics and membrane swelling. J Am Chem Soc 136:5309–5322CrossRef
30.
go back to reference Wang J, Li S, Zhang S (2010) Novel hydroxide-conducting polyelectrolyte composed of an poly(arylene ether sulfone) containing pendant quaternary guanidinium groups for alkaline fuel cell applications. Macromolecules 43:3890–3896CrossRef Wang J, Li S, Zhang S (2010) Novel hydroxide-conducting polyelectrolyte composed of an poly(arylene ether sulfone) containing pendant quaternary guanidinium groups for alkaline fuel cell applications. Macromolecules 43:3890–3896CrossRef
31.
go back to reference Li N, Leng Y, Hickner MA, Wang CY (2013) Highly stable, anion conductive, comb-shaped copolymers for alkaline fuel cells. J Am Chem Soc 135:10124–10133CrossRef Li N, Leng Y, Hickner MA, Wang CY (2013) Highly stable, anion conductive, comb-shaped copolymers for alkaline fuel cells. J Am Chem Soc 135:10124–10133CrossRef
32.
go back to reference Mohanty AD, Lee Y, Zhu BL, Hickner MA, Bae C (2014) Anion exchange fuel cell membranes prepared from C-H Borylation and Suzuki coupling reactions. Macromolecules 47:1973–1980CrossRef Mohanty AD, Lee Y, Zhu BL, Hickner MA, Bae C (2014) Anion exchange fuel cell membranes prepared from C-H Borylation and Suzuki coupling reactions. Macromolecules 47:1973–1980CrossRef
33.
go back to reference Jo TS, Kim SH, Shin J, Bae C (2009) Highly efficient incorporation of functional groups into aromatic main-chain polymer using iridium-catalyzed C−H activation and Suzuki−Miyaura reaction. J Am Chem Soc 131:1656–1657CrossRef Jo TS, Kim SH, Shin J, Bae C (2009) Highly efficient incorporation of functional groups into aromatic main-chain polymer using iridium-catalyzed C−H activation and Suzuki−Miyaura reaction. J Am Chem Soc 131:1656–1657CrossRef
34.
go back to reference Zhu L, Pan J, Christensen CM, Lin B, Hickner MA (2016) Functionalization of poly(2,6-dimethyl-1,4-phenylene oxide)s with hindered fluorene side chains for anion exchange membranes. Macromolecules 49:3300–3309CrossRef Zhu L, Pan J, Christensen CM, Lin B, Hickner MA (2016) Functionalization of poly(2,6-dimethyl-1,4-phenylene oxide)s with hindered fluorene side chains for anion exchange membranes. Macromolecules 49:3300–3309CrossRef
35.
go back to reference Ge Q, Ran J, Miao J, Yang Z, Xu T (2015) Click chemistry finds its way in constructing an ionic highway in anion-exchange membrane. ACS Appl Mater Interfaces 7:28545–28553CrossRef Ge Q, Ran J, Miao J, Yang Z, Xu T (2015) Click chemistry finds its way in constructing an ionic highway in anion-exchange membrane. ACS Appl Mater Interfaces 7:28545–28553CrossRef
36.
go back to reference Li N, Guiver MD, Binder WH (2013) Towards high conductivity in anion-exchange membranes for alkaline fuel cells. Chemsuschem 6:1376–1383CrossRef Li N, Guiver MD, Binder WH (2013) Towards high conductivity in anion-exchange membranes for alkaline fuel cells. Chemsuschem 6:1376–1383CrossRef
37.
go back to reference Zhu L, Zimudzi TJ, Li N, Pan J, Lin B, Hickner MA (2016) Crosslinking of comb-shaped polymer anion exchange membranes via thiolene click chemistry. Polym Chem 7:2464–2475CrossRef Zhu L, Zimudzi TJ, Li N, Pan J, Lin B, Hickner MA (2016) Crosslinking of comb-shaped polymer anion exchange membranes via thiolene click chemistry. Polym Chem 7:2464–2475CrossRef
38.
go back to reference Li N, Zhang Q, Wang C, Lee YM, Guiver MD (2012) Phenyltrimethylammonium functionalized polysulfone anion exchange membranes. Macromolecules 45:2411–2419CrossRef Li N, Zhang Q, Wang C, Lee YM, Guiver MD (2012) Phenyltrimethylammonium functionalized polysulfone anion exchange membranes. Macromolecules 45:2411–2419CrossRef
39.
go back to reference Zhang Z, Wu L, Varcoe J, Li C, Ong AL, Poynton S, Xu T (2013) Aromatic polyelectrolytes via polyacylation of pre-quaternized monomers for alkaline fuel cells. J Mater Chem A 1:2595–2601CrossRef Zhang Z, Wu L, Varcoe J, Li C, Ong AL, Poynton S, Xu T (2013) Aromatic polyelectrolytes via polyacylation of pre-quaternized monomers for alkaline fuel cells. J Mater Chem A 1:2595–2601CrossRef
40.
go back to reference Li N, Yan T, Li Z, Thurn-Albrecht T, Binder WH (2012) Comb-shaped polymers to enhance hydroxide transport in anion exchange membranes. Energy Environ Sci 5:7888–7892CrossRef Li N, Yan T, Li Z, Thurn-Albrecht T, Binder WH (2012) Comb-shaped polymers to enhance hydroxide transport in anion exchange membranes. Energy Environ Sci 5:7888–7892CrossRef
41.
go back to reference Ran J, Wu L, Xu T (2013) Enhancement of hydroxide conduction by self-assembly in anion conductive comb-shaped copolymers. Polym Chem 4:4612–4620CrossRef Ran J, Wu L, Xu T (2013) Enhancement of hydroxide conduction by self-assembly in anion conductive comb-shaped copolymers. Polym Chem 4:4612–4620CrossRef
42.
go back to reference Zhao Z, Wang J, Li S, Zhang S (2011) Synthesis of multi-block poly(arylene ether sulfone) copolymer membrane with pendant quaternary ammonium groups for alkaline fuel cell. J Power Sources 196:4445–4450CrossRef Zhao Z, Wang J, Li S, Zhang S (2011) Synthesis of multi-block poly(arylene ether sulfone) copolymer membrane with pendant quaternary ammonium groups for alkaline fuel cell. J Power Sources 196:4445–4450CrossRef
43.
go back to reference Dong X, Hou S, Mao H, Zheng J, Zhang S (2016) Novel hydrophilic-hydrophobic block copolymer based on cardo poly(arylene ether sulfone)s with bis-quaternary ammonium moieties for anion exchange membranes. J Membr Sci 518:31–39CrossRef Dong X, Hou S, Mao H, Zheng J, Zhang S (2016) Novel hydrophilic-hydrophobic block copolymer based on cardo poly(arylene ether sulfone)s with bis-quaternary ammonium moieties for anion exchange membranes. J Membr Sci 518:31–39CrossRef
44.
go back to reference Miyanishi S, Fukushima T, Yamaguchi T (2015) Synthesis and property of semicrystalline anion exchange membrane with well-defined ion channel structure. Macromolecules 48:2576–2584CrossRef Miyanishi S, Fukushima T, Yamaguchi T (2015) Synthesis and property of semicrystalline anion exchange membrane with well-defined ion channel structure. Macromolecules 48:2576–2584CrossRef
45.
go back to reference Wu D, Xu F, Sun B, Fu R, He H, Matyjaszewski K (2012) Design and preparation of porous polymers. Chem Rev 12:3959–4015CrossRef Wu D, Xu F, Sun B, Fu R, He H, Matyjaszewski K (2012) Design and preparation of porous polymers. Chem Rev 12:3959–4015CrossRef
46.
go back to reference Carta M, Malpass-Evans R, Croad M, Rogan Y, Jansen JC, Bernardo P, Bazzarelli F, McKeown NB (2013) An efficient polymer molecular sieve for membrane gas separations. Science 339:303–307CrossRef Carta M, Malpass-Evans R, Croad M, Rogan Y, Jansen JC, Bernardo P, Bazzarelli F, McKeown NB (2013) An efficient polymer molecular sieve for membrane gas separations. Science 339:303–307CrossRef
47.
go back to reference Ishiwari F, Sato T, Yamazaki H, Kondo JN, Miyanishi S, Yamaguchi T, Fukushima T (2016) An anion-conductive microporous membrane composed of a rigid ladder polymer with a spirobiindane backbone. J Mater Chem A 4:17655–17659CrossRef Ishiwari F, Sato T, Yamazaki H, Kondo JN, Miyanishi S, Yamaguchi T, Fukushima T (2016) An anion-conductive microporous membrane composed of a rigid ladder polymer with a spirobiindane backbone. J Mater Chem A 4:17655–17659CrossRef
48.
go back to reference Yang Z, Guo R, Malpass-Evans R, Carta M, Mckeown NB, Guiver MD, Wu L, Xu T (2016) Highly conductive anion-exchange membranes from microporous Tröger’s base polymers. Angew Chem Int Ed 55:11499–11502CrossRef Yang Z, Guo R, Malpass-Evans R, Carta M, Mckeown NB, Guiver MD, Wu L, Xu T (2016) Highly conductive anion-exchange membranes from microporous Tröger’s base polymers. Angew Chem Int Ed 55:11499–11502CrossRef
49.
go back to reference Sata T, Tsujimoto M, Yamaguchi T, Matsusaki K (1996) Change of anion exchange membranes in an aqueous sodium hydroxide solution at high temperature. J Membr Sci 112:161–170CrossRef Sata T, Tsujimoto M, Yamaguchi T, Matsusaki K (1996) Change of anion exchange membranes in an aqueous sodium hydroxide solution at high temperature. J Membr Sci 112:161–170CrossRef
50.
go back to reference Cope AC, Trumbull ER (1960) Olefins from amines: the Hofmann elimination reaction and amine oxide pyrolysis. Org React 11:317–493 Cope AC, Trumbull ER (1960) Olefins from amines: the Hofmann elimination reaction and amine oxide pyrolysis. Org React 11:317–493
51.
go back to reference Stevens TS (1930) CCLXX—degradation of quaternary ammonium salts. Part II. J Chem Soc 2107–2119 Stevens TS (1930) CCLXX—degradation of quaternary ammonium salts. Part II. J Chem Soc 2107–2119
52.
go back to reference Kantor SW, Hauser CR (1951) Rearrangements of benzyltrimethylammonium ion and related quaternary ammonium ions by sodium amide involving migration into the ring. J Am Chem Soc 73:4122–4131CrossRef Kantor SW, Hauser CR (1951) Rearrangements of benzyltrimethylammonium ion and related quaternary ammonium ions by sodium amide involving migration into the ring. J Am Chem Soc 73:4122–4131CrossRef
53.
go back to reference Mohanty AD, Bae C (2014) Mechanistic analysis of ammonium cation stability for alkaline exchange membrane fuel cells. J Mater Chem A 2:17314–17320CrossRef Mohanty AD, Bae C (2014) Mechanistic analysis of ammonium cation stability for alkaline exchange membrane fuel cells. J Mater Chem A 2:17314–17320CrossRef
54.
go back to reference Chempath S, Einsla BR, Pratt LR, Macomber CS, Boncella JM, Rau JA, Pivovar BS (2008) Mechanism of tetraalkylammonium headgroup degradation in alkaline fuel cell membranes. J Phys Chem C 112:3179–3182CrossRef Chempath S, Einsla BR, Pratt LR, Macomber CS, Boncella JM, Rau JA, Pivovar BS (2008) Mechanism of tetraalkylammonium headgroup degradation in alkaline fuel cell membranes. J Phys Chem C 112:3179–3182CrossRef
55.
go back to reference Chempath S, Boncella JM, Pratt LR, Henson N, Pivovar BS (2010) Density functional theory study of degradation of tetraalkylammonium hydroxides. J Phys Chem C 114:11977–11983CrossRef Chempath S, Boncella JM, Pratt LR, Henson N, Pivovar BS (2010) Density functional theory study of degradation of tetraalkylammonium hydroxides. J Phys Chem C 114:11977–11983CrossRef
56.
go back to reference Long H, Kim K, Pivovar BS (2012) Hydroxide degradation pathways for substituted trimethylammonium cations: a DFT study. J Phys Chem C 116:9419–9426CrossRef Long H, Kim K, Pivovar BS (2012) Hydroxide degradation pathways for substituted trimethylammonium cations: a DFT study. J Phys Chem C 116:9419–9426CrossRef
57.
go back to reference Wang W, Wang S, Xie X, Iv Y, Ramani V (2014) Density functional theory study of hydroxide-ion induced degradation of imidazolium cations. Int J Hydrogen Energy 39:14355–14361CrossRef Wang W, Wang S, Xie X, Iv Y, Ramani V (2014) Density functional theory study of hydroxide-ion induced degradation of imidazolium cations. Int J Hydrogen Energy 39:14355–14361CrossRef
58.
go back to reference Matsuyama K, Ohashi H, Miyanishi S, Ushiyama H, Yamaguchi T (2016) Quantum chemical approach for highly durable anion exchange groups in solid-state alkaline fuel cells. RSC Adv 6:36269–36272CrossRef Matsuyama K, Ohashi H, Miyanishi S, Ushiyama H, Yamaguchi T (2016) Quantum chemical approach for highly durable anion exchange groups in solid-state alkaline fuel cells. RSC Adv 6:36269–36272CrossRef
59.
go back to reference Lin B, Dong H, Li Y, Si Z, Gu F, Yan F (2013) Alkaline stable C2-substituted imidazolium-based anion-exchange membranes. Chem Mater 25:1858–1867CrossRef Lin B, Dong H, Li Y, Si Z, Gu F, Yan F (2013) Alkaline stable C2-substituted imidazolium-based anion-exchange membranes. Chem Mater 25:1858–1867CrossRef
60.
go back to reference Dekel DR, Amar M, Willdorf S, Kosa M, Dhara S, Diesendruck CE (2017) Effect of water on the stability of quaternary ammonium groups for anion exchange membrane fuel cell applications. Chem Mater 29:4425–4431CrossRef Dekel DR, Amar M, Willdorf S, Kosa M, Dhara S, Diesendruck CE (2017) Effect of water on the stability of quaternary ammonium groups for anion exchange membrane fuel cell applications. Chem Mater 29:4425–4431CrossRef
61.
go back to reference Miyanishi S, Yamaguchi T (2017) Analysis of the degradation mechanism of the polyarylene ether anion-exchange membrane for alkaline fuel cell and water-splitting cell applications. New J Chem 41:8036CrossRef Miyanishi S, Yamaguchi T (2017) Analysis of the degradation mechanism of the polyarylene ether anion-exchange membrane for alkaline fuel cell and water-splitting cell applications. New J Chem 41:8036CrossRef
62.
go back to reference Price SC, Ren X, Savage AM, Beyer FL (2017) Synthesis and characterization of anion-exchange membranes based on hydrogenated poly(norbornene). Polym Chem 8:5708–5717CrossRef Price SC, Ren X, Savage AM, Beyer FL (2017) Synthesis and characterization of anion-exchange membranes based on hydrogenated poly(norbornene). Polym Chem 8:5708–5717CrossRef
63.
go back to reference Noonan KJT, Hugar KM, Kostalik HA IV, Lobkovsky EB, Abruña HD, Coates GW (2012) Phosphonium-functionalized polyethylene: a new class of base-stable alkaline anion exchange membranes. J Am Chem Soc 134:18161–18164CrossRef Noonan KJT, Hugar KM, Kostalik HA IV, Lobkovsky EB, Abruña HD, Coates GW (2012) Phosphonium-functionalized polyethylene: a new class of base-stable alkaline anion exchange membranes. J Am Chem Soc 134:18161–18164CrossRef
64.
go back to reference Chen D, Hickner MA (2012) Degradation of imidazolium- and quaternary ammonium-functionalized poly(fluorenyl ether ketone sulfone) anion exchange membranes. ACS Appl Mater Interfaces 4:5775–5781CrossRef Chen D, Hickner MA (2012) Degradation of imidazolium- and quaternary ammonium-functionalized poly(fluorenyl ether ketone sulfone) anion exchange membranes. ACS Appl Mater Interfaces 4:5775–5781CrossRef
65.
go back to reference Arges CG, Ramani V (2013) Two-dimensional NMR spectroscopy reveals cation-triggered backbone degradation in polysulfone-based anion exchange membranes. Proc Natl Acad Sci 110:2490–2495CrossRef Arges CG, Ramani V (2013) Two-dimensional NMR spectroscopy reveals cation-triggered backbone degradation in polysulfone-based anion exchange membranes. Proc Natl Acad Sci 110:2490–2495CrossRef
66.
go back to reference Miyanishi S, Yamaguchi T (2016) Ether cleavage-triggered degradation of benzyl alkylammonium cations for polyethersulfone anion exchange membranes. Phys Chem Chem Phys 18:12009–12023CrossRef Miyanishi S, Yamaguchi T (2016) Ether cleavage-triggered degradation of benzyl alkylammonium cations for polyethersulfone anion exchange membranes. Phys Chem Chem Phys 18:12009–12023CrossRef
67.
go back to reference Modica E, Zanaletti R, Freccero M, Mella M (2001) Alkylation of amino acids and glutathione in water by o-quinone methide. Reactivity and selectivity. J Org Chem 66:41–52CrossRef Modica E, Zanaletti R, Freccero M, Mella M (2001) Alkylation of amino acids and glutathione in water by o-quinone methide. Reactivity and selectivity. J Org Chem 66:41–52CrossRef
68.
go back to reference Antonio MD, Doria F, Richter SN, Bertipaglia C, Mella M, Sissi C, Palumbo M, Freccero M (2009) Quinone methides tethered to naphthalene diimides as selective G-quadruplex alkylating agents. J Am Chem Soc 131:13132–13141CrossRef Antonio MD, Doria F, Richter SN, Bertipaglia C, Mella M, Sissi C, Palumbo M, Freccero M (2009) Quinone methides tethered to naphthalene diimides as selective G-quadruplex alkylating agents. J Am Chem Soc 131:13132–13141CrossRef
69.
go back to reference Wang P, Liu R, Wu X, Ma H, Cao X, Zhou P, Zhang J, Weng X, Xiao-Lian Zhang, Qi J, Zhou X, Weng L (2003) A potent, water-soluble and photoinducible DNA cross-linking agent. J Am Chem Soc 125:1116–1117CrossRef Wang P, Liu R, Wu X, Ma H, Cao X, Zhou P, Zhang J, Weng X, Xiao-Lian Zhang, Qi J, Zhou X, Weng L (2003) A potent, water-soluble and photoinducible DNA cross-linking agent. J Am Chem Soc 125:1116–1117CrossRef
70.
go back to reference Chiang Y, Kresge AJ, Zhu Y (2002) Flash photolytic generation and study of p-quinone methide in aqueous solution. An estimate of rate and equilibrium constants for heterolysis of the carbon−bromine bond in p-hydroxybenzyl bromide. J Am Chem Soc 124:6349–6356CrossRef Chiang Y, Kresge AJ, Zhu Y (2002) Flash photolytic generation and study of p-quinone methide in aqueous solution. An estimate of rate and equilibrium constants for heterolysis of the carbon−bromine bond in p-hydroxybenzyl bromide. J Am Chem Soc 124:6349–6356CrossRef
71.
go back to reference Amel A, Zhu L, Hickner M, Ein-Eli Y (2014) Influence of sulfone linkage on the stability of aromatic quaternary ammonium polymers for alkaline fuel cells. J Electrochem Soc 161:F615–F621CrossRef Amel A, Zhu L, Hickner M, Ein-Eli Y (2014) Influence of sulfone linkage on the stability of aromatic quaternary ammonium polymers for alkaline fuel cells. J Electrochem Soc 161:F615–F621CrossRef
72.
go back to reference Yang Z, Zhou J, Wang S, Hou J, Wu L, Xu T (2015) A strategy to construct alkali-stable anion exchange membranes bearing ammonium groups via flexible spacers. J Mater Chem A 3:15015–15019CrossRef Yang Z, Zhou J, Wang S, Hou J, Wu L, Xu T (2015) A strategy to construct alkali-stable anion exchange membranes bearing ammonium groups via flexible spacers. J Mater Chem A 3:15015–15019CrossRef
73.
go back to reference Dang HS, Weiber EA, Jannasch P (2015) Poly(phenylene oxide) functionalized with quaternary ammonium groups via flexible alkyl spacers for high-performance anion exchange membranes. J Mater Chem A 3:5280–5284CrossRef Dang HS, Weiber EA, Jannasch P (2015) Poly(phenylene oxide) functionalized with quaternary ammonium groups via flexible alkyl spacers for high-performance anion exchange membranes. J Mater Chem A 3:5280–5284CrossRef
74.
go back to reference Hibbs MR, Fujimoto CH, Comelius CJ (2009) Synthesis and characterization of poly(phenylene)-based anion exchange membranes for alkaline fuel cells. Macromolecules 42:8316–8321CrossRef Hibbs MR, Fujimoto CH, Comelius CJ (2009) Synthesis and characterization of poly(phenylene)-based anion exchange membranes for alkaline fuel cells. Macromolecules 42:8316–8321CrossRef
75.
go back to reference Fujimoto C, Kim DS, Hibbs M, Wrobleski D, Kim YS (2012) Backbone stability of quaternized polyaromatics for alkaline membrane fuel cells. J Membr Sci 423–424:438–449CrossRef Fujimoto C, Kim DS, Hibbs M, Wrobleski D, Kim YS (2012) Backbone stability of quaternized polyaromatics for alkaline membrane fuel cells. J Membr Sci 423–424:438–449CrossRef
76.
go back to reference Lee WH, Kim YS, Bae C (2015) robust hydroxide ion conducting poly(biphenyl alkylene)s for alkaline fuel cell membranes. ACS Macro Lett 4:814–818CrossRef Lee WH, Kim YS, Bae C (2015) robust hydroxide ion conducting poly(biphenyl alkylene)s for alkaline fuel cell membranes. ACS Macro Lett 4:814–818CrossRef
77.
go back to reference Lee WH, Park EJ, Han J, Shin DW, Kim YS, Bae C (2017) Poly(terphenylene) anion exchange membranes. the effect of backbone structure on morphology and membrane property. ACS Macro Lett 6:566–570CrossRef Lee WH, Park EJ, Han J, Shin DW, Kim YS, Bae C (2017) Poly(terphenylene) anion exchange membranes. the effect of backbone structure on morphology and membrane property. ACS Macro Lett 6:566–570CrossRef
78.
go back to reference Olvera LI, Guzmán-Gutiérrez MT, Zolotukhin MG, Fomine S, Cárdenas J, Ruiz-Trevino FA, Villers D, Ezquerra TA, Prokhorov E (2013) Novel high molecular weight aromatic fluorinated polymers from one-pot, metal-free step polymerizations. Macromolecules 46:7245–7256CrossRef Olvera LI, Guzmán-Gutiérrez MT, Zolotukhin MG, Fomine S, Cárdenas J, Ruiz-Trevino FA, Villers D, Ezquerra TA, Prokhorov E (2013) Novel high molecular weight aromatic fluorinated polymers from one-pot, metal-free step polymerizations. Macromolecules 46:7245–7256CrossRef
79.
go back to reference Cruz AR, Hemandez MCG, Guzmán-Gutiérrez MT, Zolotukhin MG, Fomine S, Morales SL, Kricheldorf H, Wilks ES, Cárdenas J, Salmón M (2012) Precision synthesis of narrow polydispersity, ultrahigh molecular weight linear aromatic polymers by A2 + B2 nonstoichiometric step-selective polymerization. Macromolecules 45:6774–6780CrossRef Cruz AR, Hemandez MCG, Guzmán-Gutiérrez MT, Zolotukhin MG, Fomine S, Morales SL, Kricheldorf H, Wilks ES, Cárdenas J, Salmón M (2012) Precision synthesis of narrow polydispersity, ultrahigh molecular weight linear aromatic polymers by A2 + B2 nonstoichiometric step-selective polymerization. Macromolecules 45:6774–6780CrossRef
80.
go back to reference Ono H, Miyake J, Shimada S, Uchida M, Miyatake K (2015) Anion exchange membranes composed of perfluoroalkylene chains and ammonium-functionalized oligophenylenes. J Mater Chem A 3:21779–21788CrossRef Ono H, Miyake J, Shimada S, Uchida M, Miyatake K (2015) Anion exchange membranes composed of perfluoroalkylene chains and ammonium-functionalized oligophenylenes. J Mater Chem A 3:21779–21788CrossRef
81.
go back to reference Mahmoud AMA, Elsaghier AMM, Otsuji K, Miyatake K (2017) High hydroxide ion conductivity with enhanced alkaline stability of partially fluorinated and quaternized aromatic copolymers as anion exchange membranes. Macromolecules 50:4256–4266CrossRef Mahmoud AMA, Elsaghier AMM, Otsuji K, Miyatake K (2017) High hydroxide ion conductivity with enhanced alkaline stability of partially fluorinated and quaternized aromatic copolymers as anion exchange membranes. Macromolecules 50:4256–4266CrossRef
82.
go back to reference Yamaguchi T, Hua Z, Nakazawa T, Hara N (2007) An extremely low methanol crossover and highly durable aromatic pore-filling electrolyte membrane for direct methanol fuel cells. Adv Mater 19:592–596CrossRef Yamaguchi T, Hua Z, Nakazawa T, Hara N (2007) An extremely low methanol crossover and highly durable aromatic pore-filling electrolyte membrane for direct methanol fuel cells. Adv Mater 19:592–596CrossRef
83.
go back to reference Hara N, Ohashi H, Ito T, Yamaguchi T (2009) Rapid proton conduction through unfreezable and bound water in a wholly aromatic pore-filling electrolyte membrane. J Phys Chem B 113:4656–4663CrossRef Hara N, Ohashi H, Ito T, Yamaguchi T (2009) Rapid proton conduction through unfreezable and bound water in a wholly aromatic pore-filling electrolyte membrane. J Phys Chem B 113:4656–4663CrossRef
84.
go back to reference Jung H, Fujii K, Tamaki T, Ohashi H, Ito T, Yamaguchi T (2011) Low fuel crossover anion exchange pore-filling membrane for solid-state alkaline fuel cells. J Membr Sci 373:107–111CrossRef Jung H, Fujii K, Tamaki T, Ohashi H, Ito T, Yamaguchi T (2011) Low fuel crossover anion exchange pore-filling membrane for solid-state alkaline fuel cells. J Membr Sci 373:107–111CrossRef
85.
go back to reference Jung H, Ohashi H, Tamaki T, Yamaguchi T (2013) Improvement in thermal stability of anion-exchange membranes for fuel cell applications by controlling water state. Chem Lett 42:14–16CrossRef Jung H, Ohashi H, Tamaki T, Yamaguchi T (2013) Improvement in thermal stability of anion-exchange membranes for fuel cell applications by controlling water state. Chem Lett 42:14–16CrossRef
86.
go back to reference Sailaja GS, Miyanishi S, Yamaguchi T (2015) A durable anion conducting membrane with packed anion-exchange sites and an aromatic backbone for solid-state alkaline fuel cells. Polym Chem 6:7964–7973CrossRef Sailaja GS, Miyanishi S, Yamaguchi T (2015) A durable anion conducting membrane with packed anion-exchange sites and an aromatic backbone for solid-state alkaline fuel cells. Polym Chem 6:7964–7973CrossRef
Metadata
Title
Development of Polymer Electrolyte Membranes for Solid Alkaline Fuel Cells
Authors
Shoji Miyanishi
Takeo Yamaguchi
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-319-92917-0_14