Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

Published in: Physics of Metals and Metallography 14/2021

18-08-2021 | STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION

Development of Ultrafine Grain Structure during Deformation-Thermal Treatment of Austenitic Manganese Steel

Authors: Z. Afshari, E. Ahmadi, S. Hossein Nedjad

Published in: Physics of Metals and Metallography | Issue 14/2021

Login to get access
share
SHARE

Abstract

The use of grain refinement methods to improve both strength and toughness of austenitic manganese steels has increased gradually. In this study, a different thermal treatment processing was used to stimulate the formation of ultrafine austenite grains in Fe–0.9% C–14.5% Mn steel with average grain sizes in the range of 60–90 μm. The process involves homogenization, hot rolling, solution treatment, cold rolling, and annealing respectively. Optical microscopy, scanning electron microscopy, X-ray diffraction, and tensile test were used to analyze the microstructure and mechanical properties of specimens. It was found that 50% cold rolling and static annealing at 700 and 750°C for 1 h exhibited ultrafine grained structure with bimodal grain size distribution and dispersive carbide particles. The optimum condition of a significant grain refined structure with improved mechanical properties was obtained after annealing for 1 h at 750°C.
Literature
1.
go back to reference S. R. Allahkaram, “Causes of catastrophic failure of high Mn steel utilized as crusher overlaying shields,” Int. J. Eng. 21, 55–64 (2008). S. R. Allahkaram, “Causes of catastrophic failure of high Mn steel utilized as crusher overlaying shields,” Int. J. Eng. 21, 55–64 (2008).
2.
go back to reference Y.-G. Zhao, J.-T. Zhang, J. Tan, and B.-D. Ma, “Microstructure refinement and property improvement of metastable austenitic manganese steel induced by electropulsing,” J. Iron Steel Res. Int. 21, 685–689 (2014). CrossRef Y.-G. Zhao, J.-T. Zhang, J. Tan, and B.-D. Ma, “Microstructure refinement and property improvement of metastable austenitic manganese steel induced by electropulsing,” J. Iron Steel Res. Int. 21, 685–689 (2014). CrossRef
3.
go back to reference H. S. Avery, Austenitic Manganese Steel: Metals Handbook, 8th ed. (ASM Int., Materials Park, OH, 1961). H. S. Avery, Austenitic Manganese Steel: Metals Handbook, 8th ed. (ASM Int., Materials Park, OH, 1961).
4.
go back to reference R. Z. Valiev, Y. Estrin, Z. Horita, T. G. Langdon, M. J. Zechetbauer, and Y. T. Zhu, “Producing bulk ultrafine-grained materials by severe plastic deformation,” JOM 58 (4), 33–39 (2006). CrossRef R. Z. Valiev, Y. Estrin, Z. Horita, T. G. Langdon, M. J. Zechetbauer, and Y. T. Zhu, “Producing bulk ultrafine-grained materials by severe plastic deformation,” JOM 58 (4), 33–39 (2006). CrossRef
5.
go back to reference D. H. Shin and K.-T. Park, “Ultrafine grained steels processed by equal channel angular pressing,” Mater. Sci. Eng., A 410– 411, 299–302 (2005). CrossRef D. H. Shin and K.-T. Park, “Ultrafine grained steels processed by equal channel angular pressing,” Mater. Sci. Eng., A 410411, 299–302 (2005). CrossRef
6.
go back to reference Y. Todaka, Y. Miki, M. Umemoto, C. Wang, and K. Tsuchiya, “Tensile property of submicrocrystalline pure Fe produced by HPT-straining,” Mater. Sci. Forum 584– 585, 597–602 (2008). CrossRef Y. Todaka, Y. Miki, M. Umemoto, C. Wang, and K. Tsuchiya, “Tensile property of submicrocrystalline pure Fe produced by HPT-straining,” Mater. Sci. Forum 584585, 597–602 (2008). CrossRef
7.
go back to reference N. Tsuji, Y. Saito, S.-H. Lee, and Y. Minamino, “ARB (accumulative roll bonding) and other new techniques to produce bulk ultrafine grained material,” Adv. Eng. Mater. 5, 338–344 (2003). CrossRef N. Tsuji, Y. Saito, S.-H. Lee, and Y. Minamino, “ARB (accumulative roll bonding) and other new techniques to produce bulk ultrafine grained material,” Adv. Eng. Mater. 5, 338–344 (2003). CrossRef
8.
go back to reference V. Makarov, P. A. Skorynina, A. S. Yurovskikh and A. L. Osintseva, “Effect of the conditions of the nanostructuring frictional treatment process on the structural and phase states and the strengthening of metastable austenitic steel,” Phys. Met. Metallogr. 118, 1122–1235 (2017). V. Makarov, P. A. Skorynina, A. S. Yurovskikh and A. L. Osintseva, “Effect of the conditions of the nanostructuring frictional treatment process on the structural and phase states and the strengthening of metastable austenitic steel,” Phys. Met. Metallogr. 118, 1122–1235 (2017).
9.
go back to reference M. A. Smirnov, I. Yu. Pyshmintsev, O. V. Varnak and A. N. Maltseva, “Effect of high-temperature thermomechanical treatment on the brittle fracture of low-carbon steel,” Phys. Met. Metallogr. 119, 191–196 (2018). CrossRef M. A. Smirnov, I. Yu. Pyshmintsev, O. V. Varnak and A. N. Maltseva, “Effect of high-temperature thermomechanical treatment on the brittle fracture of low-carbon steel,” Phys. Met. Metallogr. 119, 191–196 (2018). CrossRef
10.
go back to reference G. Dini, A. Najafizadeh, R. Ueji, and S. M. Monir-Vaghefi, “Tensile deformation behavior of high manganese austenitic steel: the role of grain size,” Mater. Des. 31, 3395–3402 (2010). CrossRef G. Dini, A. Najafizadeh, R. Ueji, and S. M. Monir-Vaghefi, “Tensile deformation behavior of high manganese austenitic steel: the role of grain size,” Mater. Des. 31, 3395–3402 (2010). CrossRef
11.
go back to reference M. C. Somani, P. Juntunen, L. P. Karjalainen, R. D. K. Misra, and A. Kyröläinen, “Enhanced mechanical properties through reversion in metastable austenitic stainless steels,” Metall. Mater. Trans. A 40, 729–744 (2009). CrossRef M. C. Somani, P. Juntunen, L. P. Karjalainen, R. D. K. Misra, and A. Kyröläinen, “Enhanced mechanical properties through reversion in metastable austenitic stainless steels,” Metall. Mater. Trans. A 40, 729–744 (2009). CrossRef
12.
go back to reference L. G. Korshunov, V. V. Sagaradze, and N. L. Chernenko, “Structural and phase transformations in Hadfield steel upon frictional loading in liquid nitrogen,” Phys. Met. Metallogr. 117, 828–833 (2016). CrossRef L. G. Korshunov, V. V. Sagaradze, and N. L. Chernenko, “Structural and phase transformations in Hadfield steel upon frictional loading in liquid nitrogen,” Phys. Met. Metallogr. 117, 828–833 (2016). CrossRef
13.
go back to reference N. Tsuji and T. Maki, “Enhanced structural refinements by combining phase transformation and plastic deformation in steels,” Scr. Mater. 60, 1044–1049 (2009). CrossRef N. Tsuji and T. Maki, “Enhanced structural refinements by combining phase transformation and plastic deformation in steels,” Scr. Mater. 60, 1044–1049 (2009). CrossRef
14.
go back to reference M. V. Degtyareva, T. I. Chashchukhina, and L. M. Voronova, “Effect of high-temperature thermomechanical treatment on the brittle fracture of low-carbon steel,” Phys. Met. Metallogr. 119, 191–196 (2018). CrossRef M. V. Degtyareva, T. I. Chashchukhina, and L. M. Voronova, “Effect of high-temperature thermomechanical treatment on the brittle fracture of low-carbon steel,” Phys. Met. Metallogr. 119, 191–196 (2018). CrossRef
15.
go back to reference A. V. Makarov, P. A. Skorynina, E. G. Volkova, and A. L. Osintseva, “Effect of heating on the structure, phase composition, and micromechanical properties of the metastable austenitic steel strengthened by nanostructuring frictional treatment,” Phys. Met. Metallogr. 119, 1196–1203 (2018). CrossRef A. V. Makarov, P. A. Skorynina, E. G. Volkova, and A. L. Osintseva, “Effect of heating on the structure, phase composition, and micromechanical properties of the metastable austenitic steel strengthened by nanostructuring frictional treatment,” Phys. Met. Metallogr. 119, 1196–1203 (2018). CrossRef
16.
go back to reference M. Karimi, A. Najafizadeh, A. Kermanpur, and M. Eskandari, “Effect of martensite to austenite reversion on the formation of nano/submicron grained AISI 301 stainless steel,” Mater. Charact. 60, 1220–1223 (2009). CrossRef M. Karimi, A. Najafizadeh, A. Kermanpur, and M. Eskandari, “Effect of martensite to austenite reversion on the formation of nano/submicron grained AISI 301 stainless steel,” Mater. Charact. 60, 1220–1223 (2009). CrossRef
17.
go back to reference A. Rollett, F. Humphreys, G. S. Rohrer, and M. Hatherly, Recrystallization and Related Annealing Phenomena, 2nd ed. (Elsevier, Amsterdam, 2004). A. Rollett, F. Humphreys, G. S. Rohrer, and M. Hatherly, Recrystallization and Related Annealing Phenomena, 2nd ed. (Elsevier, Amsterdam, 2004).
18.
go back to reference K. T. Park, Y. S. Kim, J. G. Lee, and D. H. Shin, “Thermal stability and mechanical properties of ultrafine grained low carbon steel,” Mater. Sci. Eng. A 293, 165–172 (2000). CrossRef K. T. Park, Y. S. Kim, J. G. Lee, and D. H. Shin, “Thermal stability and mechanical properties of ultrafine grained low carbon steel,” Mater. Sci. Eng. A 293, 165–172 (2000). CrossRef
19.
go back to reference R. Song, D, Ponge, and D. Raabe, “Mechanical properties of an ultrafine grained C–Mn steel processed by warm deformation and annealing,” Acta Mater. 53, 48–81 (2005). R. Song, D, Ponge, and D. Raabe, “Mechanical properties of an ultrafine grained C–Mn steel processed by warm deformation and annealing,” Acta Mater. 53, 48–81 (2005).
20.
go back to reference D. Jia, Y. M. Wang, K. T. Ramesh, and E. Ma, “Deformation behavior and plastic instabilities of ultrafine grained titanium,” Appl. Phys. Lett. 79, 611–616 (2001). CrossRef D. Jia, Y. M. Wang, K. T. Ramesh, and E. Ma, “Deformation behavior and plastic instabilities of ultrafine grained titanium,” Appl. Phys. Lett. 79, 611–616 (2001). CrossRef
21.
go back to reference Y. T. Zhu and X. Z. Liao, “Nanostructured metals: retaining ductility,” Nat. Mater. 3, 351–352 (2004). CrossRef Y. T. Zhu and X. Z. Liao, “Nanostructured metals: retaining ductility,” Nat. Mater. 3, 351–352 (2004). CrossRef
Metadata
Title
Development of Ultrafine Grain Structure during Deformation-Thermal Treatment of Austenitic Manganese Steel
Authors
Z. Afshari
E. Ahmadi
S. Hossein Nedjad
Publication date
18-08-2021
Publisher
Pleiades Publishing
Published in
Physics of Metals and Metallography / Issue 14/2021
Print ISSN: 0031-918X
Electronic ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X21140027