Skip to main content
Top

2017 | OriginalPaper | Chapter

Developments in Inclusion Removal Technology

Author : John Grandfield

Published in: Light Metals 2017

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This paper reviews the past, present and possible future of molten aluminium inclusion removal technology. Filtration technology is far from a stagnant field. Methods used to remove inclusions from the melt are selected on the basis of the product requirements, operating and capital costs of the method, ease of use, efficiency and reliability of the method. The basic principles of inclusion removal for settling, floatation and filtration are reviewed along with an overview of current typical practice. New developments such as cyclones, MHD priming, vacuum assisted filtration and combined filters are described. Some ideas that have yet to result in commercial systems like “sticky” filters and use of centrifugal and Lorentz forces to increase filter efficiency are listed. The potential for new filter structures utilizing 3D printing methods to achieve high efficiency at low head loss is highlighted.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference P. Waite, A technical perspective on molten aluminium processing, in Light Metals (2002), pp. 841–848 P. Waite, A technical perspective on molten aluminium processing, in Light Metals (2002), pp. 841–848
2.
go back to reference P. Le Brun, Melt treatment—evolution and perspectives, in Light Metals (2008), pp. 621–626 P. Le Brun, Melt treatment—evolution and perspectives, in Light Metals (2008), pp. 621–626
3.
go back to reference D. Doutre, et al., Light Metals (1985), pp. 1179–1195 D. Doutre, et al., Light Metals (1985), pp. 1179–1195
4.
5.
go back to reference T.A. Engh, Principles of Melt Refining (Oxford University Press, New York, 1992), pp. 253–262 T.A. Engh, Principles of Melt Refining (Oxford University Press, New York, 1992), pp. 253–262
6.
go back to reference D. Doutre, et al., in Essential Readings in Light Metals V3, ed. by J. Grandfield, D. Eskin (Wiley, New York, 2013), pp. 297–304 D. Doutre, et al., in Essential Readings in Light Metals V3, ed. by J. Grandfield, D. Eskin (Wiley, New York, 2013), pp. 297–304
7.
go back to reference J.P. Martin, et al., Essential Readings in Light Metals, ed. by J. Grandfield, D. Eskin (Wiley, New York, 2013), pp. 115–125 J.P. Martin, et al., Essential Readings in Light Metals, ed. by J. Grandfield, D. Eskin (Wiley, New York, 2013), pp. 115–125
8.
go back to reference S. Instone, A. Buchholz, G.-U. Grun, Light Metals (2008), pp. 811–816 S. Instone, A. Buchholz, G.-U. Grun, Light Metals (2008), pp. 811–816
9.
go back to reference M. Gökelma, et al., Light Metals (2016), pp. 843–848 M. Gökelma, et al., Light Metals (2016), pp. 843–848
10.
go back to reference A. Håkonsen, G. Mæland, T. Haugen, E. Myrbostad, A. Øygård, The pick-up of micro bubbles during Limca II measurements post an inline gas fluxing unit, in Light Metals (2004), p. 749 A. Håkonsen, G. Mæland, T. Haugen, E. Myrbostad, A. Øygård, The pick-up of micro bubbles during Limca II measurements post an inline gas fluxing unit, in Light Metals (2004), p. 749
11.
go back to reference G. Sigworth, E.M. Williams, C. Chesonis, Light Metals (2008), pp. 581–586 G. Sigworth, E.M. Williams, C. Chesonis, Light Metals (2008), pp. 581–586
12.
go back to reference T.A. Engh, B. Rasch, E. Bathen, Deep bed filtration theory compared with experiments, in Light Metals (1986) T.A. Engh, B. Rasch, E. Bathen, Deep bed filtration theory compared with experiments, in Light Metals (1986)
13.
go back to reference E. Lae, et al., Experimental and numerical study of ceramic foam filtration, in Light Metals (2006), pp. 753–758 E. Lae, et al., Experimental and numerical study of ceramic foam filtration, in Light Metals (2006), pp. 753–758
14.
go back to reference C. Tian, D. Muzamdar, R.I.L. Guthrie, Met. Trans. 30B, 891–900 (1999) C. Tian, D. Muzamdar, R.I.L. Guthrie, Met. Trans. 30B, 891–900 (1999)
15.
go back to reference C. Dupuis, R. Dumont, Light Metals (1993), pp. 997–1002 C. Dupuis, R. Dumont, Light Metals (1993), pp. 997–1002
16.
go back to reference S. Ray, B. Milligan, N. Keegan, Measurement of filtration performance, filtration theory and practical applications of ceramic foam filters, in Aluminium Cast House Technology, ed. by J.A. Taylor, I.F. Bainbridge, J.F. Grandfield (2005), p. 241 S. Ray, B. Milligan, N. Keegan, Measurement of filtration performance, filtration theory and practical applications of ceramic foam filters, in Aluminium Cast House Technology, ed. by J.A. Taylor, I.F. Bainbridge, J.F. Grandfield (2005), p. 241
17.
go back to reference A. Ciftja, T.A. Engh, M. Tangstad, Met. Trans 41B, 146–150 (2009) A. Ciftja, T.A. Engh, M. Tangstad, Met. Trans 41B, 146–150 (2009)
18.
go back to reference N. Towsey, et al., The influence of grain refiners on the efficiency of ceramic foam filters, Light Metals (2001), pp. 973–977 N. Towsey, et al., The influence of grain refiners on the efficiency of ceramic foam filters, Light Metals (2001), pp. 973–977
19.
go back to reference S. Instone, M. Badowski, W. Schneider, Development of Molten metal filtration technology for aluminium, Light Metals (2005), pp. 933–938 S. Instone, M. Badowski, W. Schneider, Development of Molten metal filtration technology for aluminium, Light Metals (2005), pp. 933–938
20.
go back to reference M.W. Kennedy, et al., Met. Trans. B V44B, 671–690 (2013) M.W. Kennedy, et al., Met. Trans. B V44B, 671–690 (2013)
21.
go back to reference D. Kocaefe, et al., Appl. Math. Model. v33, 4013–4030 (2009) D. Kocaefe, et al., Appl. Math. Model. v33, 4013–4030 (2009)
22.
go back to reference J.A. Eady, D.M. Smith, J.F. Grandfield, Filtration of aluminium melts, in Aluminium Technology ’86. The Institute of Metals, London (1986), pp. 93–100 J.A. Eady, D.M. Smith, J.F. Grandfield, Filtration of aluminium melts, in Aluminium Technology ’86. The Institute of Metals, London (1986), pp. 93–100
23.
go back to reference M. Syvertsen, S. Bao, Met. Trans. 46B, 1058–1065 M. Syvertsen, S. Bao, Met. Trans. 46B, 1058–1065
24.
go back to reference C. Voight, et al., Met. Trans. 46B, 1066–1072 C. Voight, et al., Met. Trans. 46B, 1066–1072
25.
go back to reference P. LeBrun, et al., Light Metals (2016), pp. 785–789 P. LeBrun, et al., Light Metals (2016), pp. 785–789
26.
go back to reference H. Gorner, et al., Mat. Sci. Forum V546–549, 801–806 H. Gorner, et al., Mat. Sci. Forum V546–549, 801–806
27.
go back to reference L. Zhang, et al., Light Metals (2008), pp. 649–655 L. Zhang, et al., Light Metals (2008), pp. 649–655
28.
go back to reference J.H. Courtney, et al., Light Metals (2008), pp. 645–647 J.H. Courtney, et al., Light Metals (2008), pp. 645–647
29.
go back to reference A.N. Turchin, D.G. Erskin, J.H. Courtenay, L. Katergerman, Aluminium Casthouse Technology (2007), pp. 225–230 A.N. Turchin, D.G. Erskin, J.H. Courtenay, L. Katergerman, Aluminium Casthouse Technology (2007), pp. 225–230
30.
go back to reference J.H. Courtney. F. Reusch, S. Instone, Mat. Sc. Forum V693, 169–178 J.H. Courtney. F. Reusch, S. Instone, Mat. Sc. Forum V693, 169–178
31.
go back to reference J. Clumper, J.E, Dore, W.L. Hoffman, Light Metals (1980), pp. 751–757 J. Clumper, J.E, Dore, W.L. Hoffman, Light Metals (1980), pp. 751–757
32.
33.
go back to reference L. Katgerman, J. Zuidema, Light Metals (2005), pp. 927–931 L. Katgerman, J. Zuidema, Light Metals (2005), pp. 927–931
34.
go back to reference O. Birbasar, et al., in Light Metals (2016) O. Birbasar, et al., in Light Metals (2016)
35.
go back to reference N. El-Kaddah, A. Patel, T. Natarajan, The electromagnetic filtration of molten aluminum using an induced-current separator. JOM 47(5), 46–49 (1995)CrossRef N. El-Kaddah, A. Patel, T. Natarajan, The electromagnetic filtration of molten aluminum using an induced-current separator. JOM 47(5), 46–49 (1995)CrossRef
36.
37.
go back to reference T.X. Li et al., Acta Met. Sinica V13(5), 1066–1074 (2000) T.X. Li et al., Acta Met. Sinica V13(5), 1066–1074 (2000)
39.
go back to reference R. Fritzsch, M.W. Kennedy, R.E. Aune, Light Metals (2016), pp. 779–784 R. Fritzsch, M.W. Kennedy, R.E. Aune, Light Metals (2016), pp. 779–784
40.
go back to reference F. Breton, P. Waite, P. Robichaud, Light Metals (2013), pp. 967–972 F. Breton, P. Waite, P. Robichaud, Light Metals (2013), pp. 967–972
41.
Metadata
Title
Developments in Inclusion Removal Technology
Author
John Grandfield
Copyright Year
2017
DOI
https://doi.org/10.1007/978-3-319-51541-0_170

Premium Partners