Skip to main content
Top
Published in:

07-04-2024

Device modeling and performance analysis of an all-inorganic lead-free Ag2BiI5 rudorffite-based solar cell with AgSCN as HTL via GPVDM simulation software

Author: Samaneh Mozaffari

Published in: Journal of Computational Electronics | Issue 3/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The unprecedented photo-electronic conversion efficiency (PCE) of organic–inorganic lead perovskite solar cells (PSCs), over 25% within a span of 10 years, makes them an optimistic solution for sustainable and renewable energy sources. However, issues associated with their toxicity and short lifetime raise public concern for their long-term utility. Therefore, resolving these two problems is urgent for developing sustainable and environmentally friendly PSCs. In this study, a novel configuration of a lead-free light absorbing layer with a rudorffite structure (Ag2BiI5) is simulated, using the GPVDM software with TiO2 and Spiro-OMeTAD as traditional electron and hole transport layers (HTLs). The proposed PSC structure is compared to other published results in the literature. In the meantime, by fitting the current density-voltage characteristic curves of theoretical data and experimental results, the precise photovoltaic parameters of the Ag2BiI5 structure are extracted. After optimizing the thickness of the Ag2BiI5 and replacing TiO2 with SnO2 and Spiro-OMeTAD with new a HTL of AgSCN, a PSC in the form of normal a FTO/SnO2/Ag2BiI5/AgSCN/Ag structure is designed. Further, the effect of the thickness of the AgSCN HTL, defect density of light absorbing layer, operating temperature and metal contacts on the photovoltaic performance of the device are thoroughly evaluated. Under the optimized AgSCN HTL thickness, the best theoretical efficiency of 3.61% is achieved for this normal configuration, which is the highest value reported among rudorffite light absorbing materials-based PSCs.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Basumatary, P., Agarwal, P.: A short review on progress in perovskite solar cells. Mater. Res. Bull. 149, 111700 (2022)CrossRef Basumatary, P., Agarwal, P.: A short review on progress in perovskite solar cells. Mater. Res. Bull. 149, 111700 (2022)CrossRef
2.
go back to reference Zhang, D., Li, D., Hu, Y., Mei, A., Han, H.: Degradation pathways in perovskite solar cells and how to meet international standards. Commun. Mater. 3, 58 (2022)CrossRef Zhang, D., Li, D., Hu, Y., Mei, A., Han, H.: Degradation pathways in perovskite solar cells and how to meet international standards. Commun. Mater. 3, 58 (2022)CrossRef
3.
go back to reference Yang, M., Wang, H.X., Cai, W., Zang, Z.: Mixed-halide inorganic perovskite solar cells: opportunities and challenges. Adv. Opt. Mater. 11, 2301052 (2023)CrossRef Yang, M., Wang, H.X., Cai, W., Zang, Z.: Mixed-halide inorganic perovskite solar cells: opportunities and challenges. Adv. Opt. Mater. 11, 2301052 (2023)CrossRef
4.
go back to reference Magdalin, A.E., Nixon, P.D., Jayaseelan, E., Sivakumar, M., Devi, S.K.N., Subathra, M.S.P., Kumar, N.M., Ananthi, N.: Development of lead-free perovskite solar cells: opportunities, challenges, and future technologies. Results Eng. 20, 101438 (2023)CrossRef Magdalin, A.E., Nixon, P.D., Jayaseelan, E., Sivakumar, M., Devi, S.K.N., Subathra, M.S.P., Kumar, N.M., Ananthi, N.: Development of lead-free perovskite solar cells: opportunities, challenges, and future technologies. Results Eng. 20, 101438 (2023)CrossRef
5.
go back to reference Bera, A., Paramanik, S., Maiti, A., Pal, A.J.: Energy landscape in silver-bismuth-iodide rudorffites: combining scanning tunneling spectroscopy and Kelvin probe force microscopy. Phys. Rev. Materials 5, 095404 (2021)CrossRef Bera, A., Paramanik, S., Maiti, A., Pal, A.J.: Energy landscape in silver-bismuth-iodide rudorffites: combining scanning tunneling spectroscopy and Kelvin probe force microscopy. Phys. Rev. Materials 5, 095404 (2021)CrossRef
6.
go back to reference Khazaee, M., Sardashti, K., Chung, C.C., Sun, J.P., Zhou, H., Bergmann, E., Dunlap-Shohl, W.A., Han, Q., Hill, I.G., Jones, J.L., Lupascu, D.C., Mitzi, D.B.: Dual source evaporation of silver bismuth iodide films for planar junction solar cells. J. Mater. Chem. A 7, 2095–2105 (2019)CrossRef Khazaee, M., Sardashti, K., Chung, C.C., Sun, J.P., Zhou, H., Bergmann, E., Dunlap-Shohl, W.A., Han, Q., Hill, I.G., Jones, J.L., Lupascu, D.C., Mitzi, D.B.: Dual source evaporation of silver bismuth iodide films for planar junction solar cells. J. Mater. Chem. A 7, 2095–2105 (2019)CrossRef
7.
go back to reference Konstantakou, M., Thomas, S.T.: A critical review on tin halide perovskite solar cells. J. Mater. Chem. A 5, 11518–11549 (2017)CrossRef Konstantakou, M., Thomas, S.T.: A critical review on tin halide perovskite solar cells. J. Mater. Chem. A 5, 11518–11549 (2017)CrossRef
8.
go back to reference Mozaffari, S., Nateghi, M.R.: A Novel perovskite solar cell comprising CsPbI2Br/Cs2SnI6 (CsGeI3) cascade absorbing bilayer and Cr2O3 electron transport material: a theoretical comparison study. Optik 288, 171206 (2023)CrossRef Mozaffari, S., Nateghi, M.R.: A Novel perovskite solar cell comprising CsPbI2Br/Cs2SnI6 (CsGeI3) cascade absorbing bilayer and Cr2O3 electron transport material: a theoretical comparison study. Optik 288, 171206 (2023)CrossRef
9.
go back to reference Jung, K.W., Sohn, M.R., Lee, H.M., Yang, I.S., Sung, S.D., Kim, J., Diaub, E.W.G., Lee, W.I.: Silver bismuth iodides in various compositions as potential Pb free light absorber for hybrid solar cells. Sustain. Energy Fuels 2, 294–302 (2018)CrossRef Jung, K.W., Sohn, M.R., Lee, H.M., Yang, I.S., Sung, S.D., Kim, J., Diaub, E.W.G., Lee, W.I.: Silver bismuth iodides in various compositions as potential Pb free light absorber for hybrid solar cells. Sustain. Energy Fuels 2, 294–302 (2018)CrossRef
10.
go back to reference Prasad, M.D., Krishna, M.G., Batabyal, S.K.: Silver bismuth iodide nanomaterials as lead-free perovskite for visible light photodetection. ACS Appl. Nano Mater. 4, 1252–1259 (2021)CrossRef Prasad, M.D., Krishna, M.G., Batabyal, S.K.: Silver bismuth iodide nanomaterials as lead-free perovskite for visible light photodetection. ACS Appl. Nano Mater. 4, 1252–1259 (2021)CrossRef
11.
go back to reference Ghosh, B., Wu, B., Guo, X., Harikesh, P.C., John, R.A., Baikie, T., Wee, A.A.T.S., Guet, C., Sum, T.C., Mhaisalkar, S., Mathews, N.: Superior performance of silver bismuth iodide photovoltaics fabricated via dynamic hot-casting method under ambient conditions. Adv. Energy Mater. 8, 1802051 (2018)CrossRef Ghosh, B., Wu, B., Guo, X., Harikesh, P.C., John, R.A., Baikie, T., Wee, A.A.T.S., Guet, C., Sum, T.C., Mhaisalkar, S., Mathews, N.: Superior performance of silver bismuth iodide photovoltaics fabricated via dynamic hot-casting method under ambient conditions. Adv. Energy Mater. 8, 1802051 (2018)CrossRef
12.
go back to reference Kim, Y., Yang, Z., Jain, A., Voznyy, O., Kim, G.H., Liu, M., Quan, L.N., Arquer, F.P.G.D., Comin, R., Fan, J.Z., Sargent, E.H.: Pure cubic-phase hybrid iodobismuthates AgBi2I7 for thin-film photovoltaics. Angew. Chem. Int. 55, 9586–9590 (2016)CrossRef Kim, Y., Yang, Z., Jain, A., Voznyy, O., Kim, G.H., Liu, M., Quan, L.N., Arquer, F.P.G.D., Comin, R., Fan, J.Z., Sargent, E.H.: Pure cubic-phase hybrid iodobismuthates AgBi2I7 for thin-film photovoltaics. Angew. Chem. Int. 55, 9586–9590 (2016)CrossRef
13.
go back to reference Sansom, H.C., Longo, G., Wright, A.D., Buizza, L.R.V., Mahesh, S., Wenger, B., Zanella, M., Abdi-Jalebi, M., Pitcher, M.J., Dyer, M.S., Manning, T.D., Friend, R.H., Herz, L.M., Snaith, H.J., Claridge, J.B., Matthew, J., Rosseinsky, M.R.: Highly absorbing lead-free semiconductor Cu2AgBiI6 for photovoltaic applications from the quaternary CuI—AgI–BiI3 phase space. J. Am. Chem. Soc. 143, 3983–3992 (2021)CrossRef Sansom, H.C., Longo, G., Wright, A.D., Buizza, L.R.V., Mahesh, S., Wenger, B., Zanella, M., Abdi-Jalebi, M., Pitcher, M.J., Dyer, M.S., Manning, T.D., Friend, R.H., Herz, L.M., Snaith, H.J., Claridge, J.B., Matthew, J., Rosseinsky, M.R.: Highly absorbing lead-free semiconductor Cu2AgBiI6 for photovoltaic applications from the quaternary CuI—AgI–BiI3 phase space. J. Am. Chem. Soc. 143, 3983–3992 (2021)CrossRef
14.
go back to reference Chakraborty, A., Pai, N., Zhao, J., Tuttle, B.R., Simonov, A.N., Pecunia, V.: Rudorffites and beyond: Perovskite-inspired silver/copper pnictohalides for next-generation environmentally friendly photovoltaics and optoelectronics. Adv. Funct. Mater. 32, 2203300 (2022)CrossRef Chakraborty, A., Pai, N., Zhao, J., Tuttle, B.R., Simonov, A.N., Pecunia, V.: Rudorffites and beyond: Perovskite-inspired silver/copper pnictohalides for next-generation environmentally friendly photovoltaics and optoelectronics. Adv. Funct. Mater. 32, 2203300 (2022)CrossRef
15.
go back to reference Hu, Z., Wang, Z., Kapil, G., Ma, T., Iikubo, S., Minemoto, T., Yoshino, K., Toyoda, T., Shen, Q., Hayase, S.: Solution-processed air-stable copper bismuth iodide for photovoltaics. Chem. Sus. Chem. 11, 2930–2935 (2018)CrossRef Hu, Z., Wang, Z., Kapil, G., Ma, T., Iikubo, S., Minemoto, T., Yoshino, K., Toyoda, T., Shen, Q., Hayase, S.: Solution-processed air-stable copper bismuth iodide for photovoltaics. Chem. Sus. Chem. 11, 2930–2935 (2018)CrossRef
16.
go back to reference He, F., Wang, Q., Zhu, W., Chen, D., Zhang, J., Zhang, C., Hao, Y.: Carbon-based, all-inorganic, lead-free Ag2BiI5 rudorffite solar cells with high photovoltages. Solid-State Electron. 176, 107950 (2021)CrossRef He, F., Wang, Q., Zhu, W., Chen, D., Zhang, J., Zhang, C., Hao, Y.: Carbon-based, all-inorganic, lead-free Ag2BiI5 rudorffite solar cells with high photovoltages. Solid-State Electron. 176, 107950 (2021)CrossRef
17.
go back to reference Lan, C., Liang, G., Zhao, S., Lan, H., Peng, H., Zhang, D., Sun, H., Luo, J., Fang, P.: Lead-free formamidinium bismuth perovskites (FA)3Bi2I9 with low bandgap for potential photovoltaic application. Sol. Energy 117, 501–507 (2019)CrossRef Lan, C., Liang, G., Zhao, S., Lan, H., Peng, H., Zhang, D., Sun, H., Luo, J., Fang, P.: Lead-free formamidinium bismuth perovskites (FA)3Bi2I9 with low bandgap for potential photovoltaic application. Sol. Energy 117, 501–507 (2019)CrossRef
19.
go back to reference Roy, P., Raoui, Y., Ayush, K.A.: Design and simulation of efficient tin based perovskite solar cells through optimization of selective layers: theoretical insights. Opt. Mater. 125, 112057 (2022)CrossRef Roy, P., Raoui, Y., Ayush, K.A.: Design and simulation of efficient tin based perovskite solar cells through optimization of selective layers: theoretical insights. Opt. Mater. 125, 112057 (2022)CrossRef
20.
go back to reference Burgelman, M., Nollet, P., Degrave, S.: Modelling polycrystalline semiconductor solar cells. Thin Solid Films 361, 527–532 (2000)CrossRef Burgelman, M., Nollet, P., Degrave, S.: Modelling polycrystalline semiconductor solar cells. Thin Solid Films 361, 527–532 (2000)CrossRef
22.
go back to reference Zhang, S., Zhang, S., Song, L., Wu, X., Fang, S.: Synthesis and photocatalytic property of a new silver thiocyanate semiconductor. Chem. Eng. J. 243, 24–30 (2014)CrossRef Zhang, S., Zhang, S., Song, L., Wu, X., Fang, S.: Synthesis and photocatalytic property of a new silver thiocyanate semiconductor. Chem. Eng. J. 243, 24–30 (2014)CrossRef
23.
go back to reference Hu, J.W., Zhang, X.: Ag@AgSCN nanoparticle: an efficient sunlight active photocatalyst. Powder Technol. 267, 240–244 (2014)CrossRef Hu, J.W., Zhang, X.: Ag@AgSCN nanoparticle: an efficient sunlight active photocatalyst. Powder Technol. 267, 240–244 (2014)CrossRef
24.
go back to reference Yang, M., Ma, J.: Synthesis and characterizations of AgSCN nanospheres using AgCl as the precursor. Appl. Surf. Sci. 255, 9323–9326 (2009)CrossRef Yang, M., Ma, J.: Synthesis and characterizations of AgSCN nanospheres using AgCl as the precursor. Appl. Surf. Sci. 255, 9323–9326 (2009)CrossRef
25.
go back to reference Elseman, A.H.: AgSCN as a new hole transporting material for inverted perovskite solar cells Sci. Rep. 13, 7939 (2023) Elseman, A.H.: AgSCN as a new hole transporting material for inverted perovskite solar cells Sci. Rep. 13, 7939 (2023)
26.
go back to reference Ma, F., Zhao, Y., Qu, Z., You, J.: Developments of highly efficient perovskite solar cells. Acc. Mater. Res. 4, 716–725 (2023)CrossRef Ma, F., Zhao, Y., Qu, Z., You, J.: Developments of highly efficient perovskite solar cells. Acc. Mater. Res. 4, 716–725 (2023)CrossRef
27.
go back to reference Kim, D.I., Lee, J.W., Jeong, R.H., Nam, S.H., Hwang, K.H., Boo, J.H.: Oxygen-plasma processed Spiro-OMeTAD toward high performance for perovskite solar cell. Surf. Coat. Technol. 357, 189–194 (2019)CrossRef Kim, D.I., Lee, J.W., Jeong, R.H., Nam, S.H., Hwang, K.H., Boo, J.H.: Oxygen-plasma processed Spiro-OMeTAD toward high performance for perovskite solar cell. Surf. Coat. Technol. 357, 189–194 (2019)CrossRef
28.
go back to reference Wang, Y., Duan, L., Zhang, M., Hameiri, Z., Liu, X., Bai, Y., Hao, X.: PTAA as efficient hole transport materials in perovskite solar cells: a review. RRL Solar 6, 2200234 (2022)CrossRef Wang, Y., Duan, L., Zhang, M., Hameiri, Z., Liu, X., Bai, Y., Hao, X.: PTAA as efficient hole transport materials in perovskite solar cells: a review. RRL Solar 6, 2200234 (2022)CrossRef
29.
go back to reference MacKenzie, R.C.I., Kirchartz, T., Dibb, G.F.A., Nelson, J.: Modeling nongeminate recombination in P3HT: PCBM solar cells. J. Phys. Chem. C 115, 9806–9813 (2011)CrossRef MacKenzie, R.C.I., Kirchartz, T., Dibb, G.F.A., Nelson, J.: Modeling nongeminate recombination in P3HT: PCBM solar cells. J. Phys. Chem. C 115, 9806–9813 (2011)CrossRef
30.
go back to reference Ourahmoun, Q.: Effect of the interfacial materials on the performance of organic photovoltaic cells. Mater. Today Proc. 49, 992–996 (2022)CrossRef Ourahmoun, Q.: Effect of the interfacial materials on the performance of organic photovoltaic cells. Mater. Today Proc. 49, 992–996 (2022)CrossRef
31.
go back to reference Al-Rasheidi, M., Khan, F., Al-Ahmed, A., Rehman, S., Al-Sulaiman, F.: Cd-doped ZnO-based electron transport layer for organic-inorganic hybrid perovskite cells: experimental and numerical study. Opt. Mater. 126, 112144 (2022)CrossRef Al-Rasheidi, M., Khan, F., Al-Ahmed, A., Rehman, S., Al-Sulaiman, F.: Cd-doped ZnO-based electron transport layer for organic-inorganic hybrid perovskite cells: experimental and numerical study. Opt. Mater. 126, 112144 (2022)CrossRef
32.
go back to reference Mekky, A.B.H.: Electrical and optical simulation of hybrid perovskite-based solar cell at various electron transport materials and light intensity. Int. J. Curr. Eng. Technol. Assoc. 44, 179–184 (2020) Mekky, A.B.H.: Electrical and optical simulation of hybrid perovskite-based solar cell at various electron transport materials and light intensity. Int. J. Curr. Eng. Technol. Assoc. 44, 179–184 (2020)
33.
go back to reference Hosseini, S.S., Adelifard, M., Ataei, M.: An investigation on physical properties of Ag2BiI5 absorber layers synthesized by microwave assisted spin coating technique. Mater. Electron. 30, 5021–5029 (2019)CrossRef Hosseini, S.S., Adelifard, M., Ataei, M.: An investigation on physical properties of Ag2BiI5 absorber layers synthesized by microwave assisted spin coating technique. Mater. Electron. 30, 5021–5029 (2019)CrossRef
34.
go back to reference Premkumar, S., Liu, D., Zhang, Y., Nataraj, D., Ramya, S., Jin, Z., Mamba, B.B., Kuvarega, A.T., Gui, J.: Stable lead-free silver bismuth iodide perovskite quantum dots for UV photodetection. ACS Appl. Nano Mater. 3, 9141–9150 (2020)CrossRef Premkumar, S., Liu, D., Zhang, Y., Nataraj, D., Ramya, S., Jin, Z., Mamba, B.B., Kuvarega, A.T., Gui, J.: Stable lead-free silver bismuth iodide perovskite quantum dots for UV photodetection. ACS Appl. Nano Mater. 3, 9141–9150 (2020)CrossRef
35.
go back to reference Thomas, A.S.: Charge transport materials, bismuth and copper-based perovskite solar cells: a review. Future Energy 1, 19–43 (2022)CrossRef Thomas, A.S.: Charge transport materials, bismuth and copper-based perovskite solar cells: a review. Future Energy 1, 19–43 (2022)CrossRef
36.
go back to reference Sansom, H.C., Whitehead, G.F.S., Dyer, M.S., Zanella, M., Manning, T.D., Pitcher, M.J., Whittles, T.J., Dhanak, V.R., Alaria, J., Claridge, J.B., Rosseinsky, M.J.: AgBiI4 as a lead-free solar absorber with potential application in photovoltaics. Chem. Mater. 29, 1538–1549 (2017)CrossRef Sansom, H.C., Whitehead, G.F.S., Dyer, M.S., Zanella, M., Manning, T.D., Pitcher, M.J., Whittles, T.J., Dhanak, V.R., Alaria, J., Claridge, J.B., Rosseinsky, M.J.: AgBiI4 as a lead-free solar absorber with potential application in photovoltaics. Chem. Mater. 29, 1538–1549 (2017)CrossRef
37.
go back to reference Turkevych, I., Kazaoui, S., Ito, E., Urano, T., Yamada, K., Tomiyasu, H., Yamagishi, H., Kondo, M., Aramaki, S.: Photovoltaic rudorffites: lead-free silver bismuth halides alternative to hybrid lead halide perovskites. Chem. Sus. Chem. 10, 3754–3759 (2017)CrossRef Turkevych, I., Kazaoui, S., Ito, E., Urano, T., Yamada, K., Tomiyasu, H., Yamagishi, H., Kondo, M., Aramaki, S.: Photovoltaic rudorffites: lead-free silver bismuth halides alternative to hybrid lead halide perovskites. Chem. Sus. Chem. 10, 3754–3759 (2017)CrossRef
38.
go back to reference Lin, Z.: Relationship between ion vacancy mobility and hysteresis of perovskite solar cells. Chem. Phys. 554, 111422 (2022)CrossRef Lin, Z.: Relationship between ion vacancy mobility and hysteresis of perovskite solar cells. Chem. Phys. 554, 111422 (2022)CrossRef
39.
go back to reference Wu, G., Zhou, J., Zhang, J., Meng, R., Wang, B., Xue, B., Leng, X., Zhang, D., Zhang, X., Bi, S., Zhou, Q., Wei, Z., Zhou, H., Zhang, Y.: Management of the crystallization in two-dimensional perovskite solar cells with enhanced efficiency within a wide temperature range and high stability. Nano Energy 58, 706–714 (2019)CrossRef Wu, G., Zhou, J., Zhang, J., Meng, R., Wang, B., Xue, B., Leng, X., Zhang, D., Zhang, X., Bi, S., Zhou, Q., Wei, Z., Zhou, H., Zhang, Y.: Management of the crystallization in two-dimensional perovskite solar cells with enhanced efficiency within a wide temperature range and high stability. Nano Energy 58, 706–714 (2019)CrossRef
40.
go back to reference Richardson, G., O’Kane, S.E.J., Niemann, R.G., Peltola, T.A., Foster, J.M., Cameronc, P.J., Walker, A.B.: Can slow-moving ions explain hysteresis in the current-voltage curves of perovskite solar cells? Energy Environ. Sci. 9, 1476 (2016)CrossRef Richardson, G., O’Kane, S.E.J., Niemann, R.G., Peltola, T.A., Foster, J.M., Cameronc, P.J., Walker, A.B.: Can slow-moving ions explain hysteresis in the current-voltage curves of perovskite solar cells? Energy Environ. Sci. 9, 1476 (2016)CrossRef
41.
go back to reference Zai, H., Ma, Y., Chen, Q., Zhou, H.: Ion migration in halide perovskite solar cells: mechanism, characterization, impact and suppression. J. Energy Chem. 63, 528–549 (2021)CrossRef Zai, H., Ma, Y., Chen, Q., Zhou, H.: Ion migration in halide perovskite solar cells: mechanism, characterization, impact and suppression. J. Energy Chem. 63, 528–549 (2021)CrossRef
42.
go back to reference Leijtens, T., Hoke, E.T., Grancini, G., Slotcavage, D.J., Eperon, G.E., Ball, J.M., Bastiani, M.D., Bowring, A.R., Martino, N., Wojciechowski, K., Mcgehee, M.D., Snaith, H.J., Petrozza, A.: Mapping electric field-induced switchable poling and structural degradation in hybrid lead halide perovskite thin films. Adv. Energy Mater. 5, 1500962 (2015)CrossRef Leijtens, T., Hoke, E.T., Grancini, G., Slotcavage, D.J., Eperon, G.E., Ball, J.M., Bastiani, M.D., Bowring, A.R., Martino, N., Wojciechowski, K., Mcgehee, M.D., Snaith, H.J., Petrozza, A.: Mapping electric field-induced switchable poling and structural degradation in hybrid lead halide perovskite thin films. Adv. Energy Mater. 5, 1500962 (2015)CrossRef
43.
go back to reference Zandi, S., Saxena, P., Gorji, N.E.: Numerical simulation of heat distribution in RGO-contacted perovskite solar cells using COMSOL. Sol. Energy 197, 105–110 (2020)CrossRef Zandi, S., Saxena, P., Gorji, N.E.: Numerical simulation of heat distribution in RGO-contacted perovskite solar cells using COMSOL. Sol. Energy 197, 105–110 (2020)CrossRef
44.
go back to reference Arfaoui, Y.E., Khenfouch, M., Habiballah, N.: Efficient all lead-free perovskite solar cell simulation of FASnI3/FAGeCl3 with 30% efficiency: SCAPS-1D investigation. Results Opt. 13, 100554 (2023)CrossRef Arfaoui, Y.E., Khenfouch, M., Habiballah, N.: Efficient all lead-free perovskite solar cell simulation of FASnI3/FAGeCl3 with 30% efficiency: SCAPS-1D investigation. Results Opt. 13, 100554 (2023)CrossRef
45.
go back to reference Karmaker, H., Siddique, A., Das, B.K.: Numerical investigation of lead free Cs2TiBr6 based perovskite solar cell with optimal selection of electron and hole transport layer through SCAPS-1D simulation. Results Opt. 13, 100571 (2023)CrossRef Karmaker, H., Siddique, A., Das, B.K.: Numerical investigation of lead free Cs2TiBr6 based perovskite solar cell with optimal selection of electron and hole transport layer through SCAPS-1D simulation. Results Opt. 13, 100571 (2023)CrossRef
46.
go back to reference Ghebouli, M.A., Ghebouli, B., Larbi, R., Chihi, T., Fatmi, M.: Effect of buffer nature, absorber layer thickness and temperature on the performance of CISSe based solar cells, using SCAPS-1D simulation program. Optik 241, 166203 (2021)CrossRef Ghebouli, M.A., Ghebouli, B., Larbi, R., Chihi, T., Fatmi, M.: Effect of buffer nature, absorber layer thickness and temperature on the performance of CISSe based solar cells, using SCAPS-1D simulation program. Optik 241, 166203 (2021)CrossRef
47.
go back to reference Dikit, H., Bansal, N.K., Porwal, S., Kumar, D., Trilok, S.T.: Performance assessment of earth-abundant Kesterite and lead-free chalcogenide-based perovskite solar cells using SCAPS-1D. Optik 295, 171474 (2023)CrossRef Dikit, H., Bansal, N.K., Porwal, S., Kumar, D., Trilok, S.T.: Performance assessment of earth-abundant Kesterite and lead-free chalcogenide-based perovskite solar cells using SCAPS-1D. Optik 295, 171474 (2023)CrossRef
48.
go back to reference Malani, R., Pansuriya, T., Kheraj, V.: A study on influence of potential defects and optimization of device structure for CuSbS2 based thin film solar cell using SCAPS-1D simulator. Opt. Mater. 133, 112910 (2022)CrossRef Malani, R., Pansuriya, T., Kheraj, V.: A study on influence of potential defects and optimization of device structure for CuSbS2 based thin film solar cell using SCAPS-1D simulator. Opt. Mater. 133, 112910 (2022)CrossRef
49.
go back to reference Houimi, A., Gezgin, S.Y., Mercimek, B., Sukur Kilic, H.S.: Numerical analysis of CZTS/n-Si solar cells using SCAPS-1D. A comparative study between experimental and calculated outputs. Opt. Mater. 121, 111544 (2021)CrossRef Houimi, A., Gezgin, S.Y., Mercimek, B., Sukur Kilic, H.S.: Numerical analysis of CZTS/n-Si solar cells using SCAPS-1D. A comparative study between experimental and calculated outputs. Opt. Mater. 121, 111544 (2021)CrossRef
50.
go back to reference Rehman, U., Almufarij, R.S., Sahar, K., Shokralla, E.A., Ashfaq, A., Mahmood, K., Hussain, E., Alsalmah, H.A., Capangpangan, R.Y., Alguno, A.C.: Device modeling of all-inorganic CsPbI3 based perovskite solar cells: a numerical study. Optik 293, 171392 (2023)CrossRef Rehman, U., Almufarij, R.S., Sahar, K., Shokralla, E.A., Ashfaq, A., Mahmood, K., Hussain, E., Alsalmah, H.A., Capangpangan, R.Y., Alguno, A.C.: Device modeling of all-inorganic CsPbI3 based perovskite solar cells: a numerical study. Optik 293, 171392 (2023)CrossRef
51.
go back to reference Hossain, M.K., Toki, G.F.I., Kuddus, A., Rubel, M.H.K., Hossain, M.M., Bencherif, H., Rahman, M.F., Islam, M.R., Mushtaq, M.: An extensive study on multiple ETL and HTL layers to design and simulation of high-performance lead-free CsSnCl3-based perovskite solar cells. Sci. Rep. 13, 2521 (2023)CrossRef Hossain, M.K., Toki, G.F.I., Kuddus, A., Rubel, M.H.K., Hossain, M.M., Bencherif, H., Rahman, M.F., Islam, M.R., Mushtaq, M.: An extensive study on multiple ETL and HTL layers to design and simulation of high-performance lead-free CsSnCl3-based perovskite solar cells. Sci. Rep. 13, 2521 (2023)CrossRef
52.
go back to reference Chakrabartty, J., Islam, M.A., Reza, S.: Performance analysis of highly efficient 2D/3D bilayer inverted perovskite solar cells. Sol. Energy 230, 195–207 (2021)CrossRef Chakrabartty, J., Islam, M.A., Reza, S.: Performance analysis of highly efficient 2D/3D bilayer inverted perovskite solar cells. Sol. Energy 230, 195–207 (2021)CrossRef
53.
go back to reference Hoang Huy, V.P., Bark, C.W.: Review on surface modification of SnO2 electron transport layer for high-efficiency perovskite solar cells. Appl. Sci. 13, 10715 (2023)CrossRef Hoang Huy, V.P., Bark, C.W.: Review on surface modification of SnO2 electron transport layer for high-efficiency perovskite solar cells. Appl. Sci. 13, 10715 (2023)CrossRef
54.
go back to reference Bastos, J.P., Manghooli, S., Jaysankar, M., Tait, J.G., Qiu, W., Gehlhaar, R., Volder, M.D., Uytterhoever, G., Poortmans, J., Paetzold, U.W.: Low-cost electrodes for stable perovskite solar cells. Appl. Phys. Lett. 110, 233902 (2017)CrossRef Bastos, J.P., Manghooli, S., Jaysankar, M., Tait, J.G., Qiu, W., Gehlhaar, R., Volder, M.D., Uytterhoever, G., Poortmans, J., Paetzold, U.W.: Low-cost electrodes for stable perovskite solar cells. Appl. Phys. Lett. 110, 233902 (2017)CrossRef
55.
go back to reference Hsiao, K.C., Yu, Y.F., Ho, C.M., Jao, M.H., Chang, Y.H., Chen, S.H., Chang, Y.H., Su, W.F., Lee, K.M., Wu, M.C.: Doping engineering of carrier transporting layers for ambient-air-stable lead-free rudorffite solar cells prepared by thermal-assisted doctor blade coating. Chem. Eng. J. 451, 138807 (2023)CrossRef Hsiao, K.C., Yu, Y.F., Ho, C.M., Jao, M.H., Chang, Y.H., Chen, S.H., Chang, Y.H., Su, W.F., Lee, K.M., Wu, M.C.: Doping engineering of carrier transporting layers for ambient-air-stable lead-free rudorffite solar cells prepared by thermal-assisted doctor blade coating. Chem. Eng. J. 451, 138807 (2023)CrossRef
56.
go back to reference Ranjan, R., Kumar, A., Bhardwaj, N., Atul, A.K., Tiwari, R.N., Sharma, A.K., Srivastava, N.: Impact of tin-based perovskite as a hole transport layer on the device performance of stable and 27.10% efficient CdTe-based solar cell by numerical simulation. J. Phys. Chem. Solids 181, 111546 (2023)CrossRef Ranjan, R., Kumar, A., Bhardwaj, N., Atul, A.K., Tiwari, R.N., Sharma, A.K., Srivastava, N.: Impact of tin-based perovskite as a hole transport layer on the device performance of stable and 27.10% efficient CdTe-based solar cell by numerical simulation. J. Phys. Chem. Solids 181, 111546 (2023)CrossRef
57.
go back to reference Raza, E., Ahmad, Z., Aziz, F., Asif, M., Mehmood, A.Q., Bhadra, J., Al-Thani, N.J.: Design and optimization of four-terminal mechanically stacked and optically coupled silicon/perovskite tandem solar cells with over 28% efficiency. Heliyon 9, e13477 (2023)CrossRef Raza, E., Ahmad, Z., Aziz, F., Asif, M., Mehmood, A.Q., Bhadra, J., Al-Thani, N.J.: Design and optimization of four-terminal mechanically stacked and optically coupled silicon/perovskite tandem solar cells with over 28% efficiency. Heliyon 9, e13477 (2023)CrossRef
58.
go back to reference Saeed, F., Gelani, H.E.: Unravelling the effect of defect density, grain boundary and gradient doping in an efficient lead-free formamidinium perovskite solar cell. Opt. Mater. 124, 111952 (2022)CrossRef Saeed, F., Gelani, H.E.: Unravelling the effect of defect density, grain boundary and gradient doping in an efficient lead-free formamidinium perovskite solar cell. Opt. Mater. 124, 111952 (2022)CrossRef
59.
go back to reference Chen, Y., Zhou, H.: Defects chemistry in high-efficiency and stable perovskite solar cells. J. Appl. Phys. 128, 060903 (2020)CrossRef Chen, Y., Zhou, H.: Defects chemistry in high-efficiency and stable perovskite solar cells. J. Appl. Phys. 128, 060903 (2020)CrossRef
60.
go back to reference Yoo, H., Park, J., Suryawanshi, M.P., Lee, J., Kim, H.H., Eom, K., Seo, H., Jung, H.R., Kim, D.M., Shin, S.W., Kim, J.H.: Surface and interface engineering for highly efficient Cu2ZnSnSe4 thin-film solar cells via in situ formed ZnSe nanoparticles. J. Mater. Chem. A 9, 5442 (2021)CrossRef Yoo, H., Park, J., Suryawanshi, M.P., Lee, J., Kim, H.H., Eom, K., Seo, H., Jung, H.R., Kim, D.M., Shin, S.W., Kim, J.H.: Surface and interface engineering for highly efficient Cu2ZnSnSe4 thin-film solar cells via in situ formed ZnSe nanoparticles. J. Mater. Chem. A 9, 5442 (2021)CrossRef
61.
go back to reference Rehan, M., Cho, A., Amare, A.M., Kim, K., Yun, J.H., Cho, J.S., Park, J.H., Gwak, J., Shin, D.: Defect passivation in Cu2ZnSnSe4 thin-film solar cells by novel sodium doping. Sol. Energy Mater. Sol. Cells 228, 111138 (2021)CrossRef Rehan, M., Cho, A., Amare, A.M., Kim, K., Yun, J.H., Cho, J.S., Park, J.H., Gwak, J., Shin, D.: Defect passivation in Cu2ZnSnSe4 thin-film solar cells by novel sodium doping. Sol. Energy Mater. Sol. Cells 228, 111138 (2021)CrossRef
62.
go back to reference Pai, N., Lu, J., Gengenbach, T.R., Seeber, A., Chesman, A.S.R., Jiang, L., Senevirathna, D.C., Andrews, P.C., Bach, U., Cheng, Y.B., Simonov, A.N.: Silver bismuth sulfoiodide solar cells: tuning optoelectronic properties by sulfide modification for enhanced photovoltaic performance. Adv. Energy Mater. 9, 1803396 (2019)CrossRef Pai, N., Lu, J., Gengenbach, T.R., Seeber, A., Chesman, A.S.R., Jiang, L., Senevirathna, D.C., Andrews, P.C., Bach, U., Cheng, Y.B., Simonov, A.N.: Silver bismuth sulfoiodide solar cells: tuning optoelectronic properties by sulfide modification for enhanced photovoltaic performance. Adv. Energy Mater. 9, 1803396 (2019)CrossRef
63.
go back to reference Jung, K.W., Sohn, M.R., Lee, H.M., Yang, I.S., Do, S.S., Kim, J., Wei-Guang, D.E., Lee, W.I.: Silver bismuth iodides in various compositions as potential Pb-free light absorbers for hybrid solar cells. Sustain. Energy Fuels 2, 294 (2018)CrossRef Jung, K.W., Sohn, M.R., Lee, H.M., Yang, I.S., Do, S.S., Kim, J., Wei-Guang, D.E., Lee, W.I.: Silver bismuth iodides in various compositions as potential Pb-free light absorbers for hybrid solar cells. Sustain. Energy Fuels 2, 294 (2018)CrossRef
64.
go back to reference Kumari, R., Mamta, M., Kumar, R., Singh, Y., Singh, V.N.: 24% efficient, simple ZnSe/Sb2Se3 heterojunction solar cell: an analysis of PV characteristics and defects. ACS Omega 8, 1632–1642 (2023)CrossRef Kumari, R., Mamta, M., Kumar, R., Singh, Y., Singh, V.N.: 24% efficient, simple ZnSe/Sb2Se3 heterojunction solar cell: an analysis of PV characteristics and defects. ACS Omega 8, 1632–1642 (2023)CrossRef
65.
go back to reference Basak, A., Singh, U.P.: Numerical modelling and analysis of earth abundant Sb2S3 and Sb2Se3 based solar cells using SCAPS-1D. Sol. Energy Mater. Sol. Cells 230, 111184 (2021)CrossRef Basak, A., Singh, U.P.: Numerical modelling and analysis of earth abundant Sb2S3 and Sb2Se3 based solar cells using SCAPS-1D. Sol. Energy Mater. Sol. Cells 230, 111184 (2021)CrossRef
66.
go back to reference Yousuf, R., Qazi, G.: Design and numerical modeling of environmentally compatible HTL-free organic-inorganic perovskite solar cells. Optik 295, 171468 (2023)CrossRef Yousuf, R., Qazi, G.: Design and numerical modeling of environmentally compatible HTL-free organic-inorganic perovskite solar cells. Optik 295, 171468 (2023)CrossRef
67.
go back to reference Muzammil, M., Khan, N.N., Fareed, M., Mirza, S.H., Zulfigar, M.: Boosting the performance of PBDB-T/ITIC based organic solar cell: a theoretical analysis utilizing SCAPS-1D. Chem. Phys. Impact 8, 100407 (2023)CrossRef Muzammil, M., Khan, N.N., Fareed, M., Mirza, S.H., Zulfigar, M.: Boosting the performance of PBDB-T/ITIC based organic solar cell: a theoretical analysis utilizing SCAPS-1D. Chem. Phys. Impact 8, 100407 (2023)CrossRef
68.
go back to reference Chebouli, M.A., Ghebouli, B., Larbi, R., Chihi, T., Fatmi, M.: Effect of buffer nature, absorber layer thickness and temperature on the performance of CISSe based solar cells, using SCAPS-1D simulation program. Optik 241, 166203 (2021)CrossRef Chebouli, M.A., Ghebouli, B., Larbi, R., Chihi, T., Fatmi, M.: Effect of buffer nature, absorber layer thickness and temperature on the performance of CISSe based solar cells, using SCAPS-1D simulation program. Optik 241, 166203 (2021)CrossRef
69.
go back to reference Arfaoui, Y.E., Khenfouch, M., Habiballah, N.: Efficient all lead-free perovskite solar cell simulation of FASnI3/FAGeCl3 with 30% efficiency: SCAPS-1D investigation. Results Opt. 13, 100554 (2023)CrossRef Arfaoui, Y.E., Khenfouch, M., Habiballah, N.: Efficient all lead-free perovskite solar cell simulation of FASnI3/FAGeCl3 with 30% efficiency: SCAPS-1D investigation. Results Opt. 13, 100554 (2023)CrossRef
Metadata
Title
Device modeling and performance analysis of an all-inorganic lead-free Ag2BiI5 rudorffite-based solar cell with AgSCN as HTL via GPVDM simulation software
Author
Samaneh Mozaffari
Publication date
07-04-2024
Publisher
Springer US
Published in
Journal of Computational Electronics / Issue 3/2024
Print ISSN: 1569-8025
Electronic ISSN: 1572-8137
DOI
https://doi.org/10.1007/s10825-024-02157-6