Skip to main content
Top
Published in: Journal of Materials Science 7/2019

02-01-2019 | Electronic materials

Device simulation of lead-free MASnI3 solar cell with CuSbS2 (copper antimony sulfide)

Authors: Chandni Devi, Rajesh Mehra

Published in: Journal of Materials Science | Issue 7/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The perovskite solar cells (PSCs) which are Pb free have gained much research enthusiasm because of the toxic nature of the lead-based halide perovskite. MASnI3 is a feasible contrasting option to MAPbX3, in light of the fact that it has broader visible absorption spectrum range and smaller band gap value of 1.3 eV than MAPbI3. The advance of fabricating Sn-based PSCs with great strength has animated the investigations of these MASnI3-based solar cells enormously. In this paper, planar heterojunction design of Sn-based iodide PSC is proposed. The copper antimony sulfide (CuSbS2) which is inorganic material is used for the very first time as hole transport layer (HTL) in conjunction with the MASnI3 active layer in this design because of its inherent features (high abundance and high open-circuit voltage) as compared to the unstable and costly Spiro-MeOTAD. With integration of CuSbS2 as a HTL in the design, the outcomes are competent enough with Jsc of 31.7 mA/cm2, Voc of 0.936 V, FF of 81.1% and PCE of 24.1%. The outcomes demonstrate that the Pb-free MASnI3 PSC is a future perspective to the photovoltaic community in terms of environment friendly nature and yielding comparative high efficiency as of lead-based halide perovskite cell.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Kazim S, Nazeeruddin MK, Grätzel M, Ahmad S (2014) Perovskite as light harvester: a game changer in photovoltaics. Angew Chem Int Ed 53:2812–2824CrossRef Kazim S, Nazeeruddin MK, Grätzel M, Ahmad S (2014) Perovskite as light harvester: a game changer in photovoltaics. Angew Chem Int Ed 53:2812–2824CrossRef
2.
go back to reference Lotsch BV (2013) New light on an old story: perovskites go solar. Angew Chem Int Ed 53:635–637CrossRef Lotsch BV (2013) New light on an old story: perovskites go solar. Angew Chem Int Ed 53:635–637CrossRef
3.
go back to reference Wei Z, Chen H, Yan K, Yang S (2014) Inkjet printing and instant chemical transformation of a CH3NH3 PbI3/nanocarbon electrode and interface for planar perovskite solar cells. Angew Chem Int Ed 53:13239–13243CrossRef Wei Z, Chen H, Yan K, Yang S (2014) Inkjet printing and instant chemical transformation of a CH3NH3 PbI3/nanocarbon electrode and interface for planar perovskite solar cells. Angew Chem Int Ed 53:13239–13243CrossRef
4.
go back to reference Kojima A, Teshima K, Shirai Y, Miyasaka T (2009) Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc 131:6050–6051CrossRef Kojima A, Teshima K, Shirai Y, Miyasaka T (2009) Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc 131:6050–6051CrossRef
6.
go back to reference Stoumpos CC, Malliakas CD, Kanatzidis MG (2013) Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorg Chem 52:9019–9038CrossRef Stoumpos CC, Malliakas CD, Kanatzidis MG (2013) Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorg Chem 52:9019–9038CrossRef
7.
go back to reference Umari P, Mosconi E, De Angelis F (2014) Relativistic GW calculations on CH3NH3 PbI3 and CH3NH3 SnI3 perovskites for solar cell applications. Sci Rep 4:1–7 Umari P, Mosconi E, De Angelis F (2014) Relativistic GW calculations on CH3NH3 PbI3 and CH3NH3 SnI3 perovskites for solar cell applications. Sci Rep 4:1–7
8.
go back to reference Chen QY, Huang Y, Huang PR, Ma T, Cao C, He Y (2016) Electronegativity explanation on the efficiency-enhancing mechanism of the hybrid inorganic–organic perovskite ABX3 from first-principles study. Chin Phys B 25:27104CrossRef Chen QY, Huang Y, Huang PR, Ma T, Cao C, He Y (2016) Electronegativity explanation on the efficiency-enhancing mechanism of the hybrid inorganic–organic perovskite ABX3 from first-principles study. Chin Phys B 25:27104CrossRef
9.
go back to reference Hao F, Stoumpos CC, Cao DH, Chang RPH, Kanatzidis MG (2014) Lead-free solid-state organic–inorganic halide perovskite solar cells. Nat Photonics 8:489–494CrossRef Hao F, Stoumpos CC, Cao DH, Chang RPH, Kanatzidis MG (2014) Lead-free solid-state organic–inorganic halide perovskite solar cells. Nat Photonics 8:489–494CrossRef
10.
go back to reference Hao F, Stoumpos CC, Guo P, Zhou N, Marks TJ, Chang RP, Kanatzidis MG (2015) Solvent-mediated crystallization of CH3NH3 SnI3 films for heterojunction depleted perovskite solar cells. J Am Chem Soc 137:11445–11452CrossRef Hao F, Stoumpos CC, Guo P, Zhou N, Marks TJ, Chang RP, Kanatzidis MG (2015) Solvent-mediated crystallization of CH3NH3 SnI3 films for heterojunction depleted perovskite solar cells. J Am Chem Soc 137:11445–11452CrossRef
11.
go back to reference Koh TM, Krishnamoorthy T, Yantara N, Shi C, Leong WL, Boix PP, Grimsdale AC, Mhaisalkar SG, Mathews N (2015) Formamidinium tin-based perovskite with low E g for photovoltaic applications. J Mater Chem A 3:14996–15000CrossRef Koh TM, Krishnamoorthy T, Yantara N, Shi C, Leong WL, Boix PP, Grimsdale AC, Mhaisalkar SG, Mathews N (2015) Formamidinium tin-based perovskite with low E g for photovoltaic applications. J Mater Chem A 3:14996–15000CrossRef
12.
go back to reference Marshall KP, Walton RI, Hatton RA (2015) Tin perovskite/fullerene planar layer photovoltaics: improving the efficiency and stability of lead-free devices. J Mater Chem A 3:11631–11640CrossRef Marshall KP, Walton RI, Hatton RA (2015) Tin perovskite/fullerene planar layer photovoltaics: improving the efficiency and stability of lead-free devices. J Mater Chem A 3:11631–11640CrossRef
13.
go back to reference Kumar MH, Dharani S, Leong WL, Boix PP, Prabhakar RR, Baikie T, Shi C, Ding H, Ramesh R, Asta M, Graetzel M, Mhaisalkar SG, Mathews N (2014) Lead-free halide perovskite solar cells with high photocurrents realized through vacancy modulation. Adv Mater 26:7122–7127CrossRef Kumar MH, Dharani S, Leong WL, Boix PP, Prabhakar RR, Baikie T, Shi C, Ding H, Ramesh R, Asta M, Graetzel M, Mhaisalkar SG, Mathews N (2014) Lead-free halide perovskite solar cells with high photocurrents realized through vacancy modulation. Adv Mater 26:7122–7127CrossRef
14.
go back to reference Noel NK, Stranks SD, Abate A, Wehrenfennig C, Guarnera S, Haghighirad A-A, Sadhanala A, Eperon GE, Pathak SK, Johnston MB, Petrozza A, Herz LM, Snaith HJ (2014) Lead-free organic-inorganic tin halide perovskites for photovoltaic applications. Energy Environ Sci 7:3061–3068CrossRef Noel NK, Stranks SD, Abate A, Wehrenfennig C, Guarnera S, Haghighirad A-A, Sadhanala A, Eperon GE, Pathak SK, Johnston MB, Petrozza A, Herz LM, Snaith HJ (2014) Lead-free organic-inorganic tin halide perovskites for photovoltaic applications. Energy Environ Sci 7:3061–3068CrossRef
15.
go back to reference Nazeeruddin MK, Hyeju Choi JK, Park S, Paek S, Ekanayake P (2014) Efficient star-shaped hole transporting materials with diphenylethenyl side arms for an efficient perovskite solar cell. J Mater Chem A 2:19136–19140CrossRef Nazeeruddin MK, Hyeju Choi JK, Park S, Paek S, Ekanayake P (2014) Efficient star-shaped hole transporting materials with diphenylethenyl side arms for an efficient perovskite solar cell. J Mater Chem A 2:19136–19140CrossRef
16.
go back to reference Minemoto T, Murata M (2014) Theoretical analysis on effect of band offsets in perovskite solar cells. Sol Energy Mater Sol Cells 133:8–14CrossRef Minemoto T, Murata M (2014) Theoretical analysis on effect of band offsets in perovskite solar cells. Sol Energy Mater Sol Cells 133:8–14CrossRef
17.
go back to reference Jian-zhuo Z, Ling-hui Q, Hui-jing D, Ying-chun C, Jian-zhuo Z, Phys C (2015) Simulation study of the losses and influences of geminate and bimolecular recombination on the performances of bulk heterojunction organic solar. Chin Phys B 24:108501CrossRef Jian-zhuo Z, Ling-hui Q, Hui-jing D, Ying-chun C, Jian-zhuo Z, Phys C (2015) Simulation study of the losses and influences of geminate and bimolecular recombination on the performances of bulk heterojunction organic solar. Chin Phys B 24:108501CrossRef
18.
go back to reference Kemp KW, Labelle AJ, Thon SM, Ip AH, Kramer IJ, Hoogland S, Sargent EH (2013) Interface recombination in depleted heterojunction photovoltaics based on colloidal quantum dots. Adv Energy Mater 3:917–922CrossRef Kemp KW, Labelle AJ, Thon SM, Ip AH, Kramer IJ, Hoogland S, Sargent EH (2013) Interface recombination in depleted heterojunction photovoltaics based on colloidal quantum dots. Adv Energy Mater 3:917–922CrossRef
19.
go back to reference Minemoto T, Murata M (2014) Device modeling of perovskite solar cells based on structural similarity with thin film inorganic solar cells. J Appl Phys 116:54505CrossRef Minemoto T, Murata M (2014) Device modeling of perovskite solar cells based on structural similarity with thin film inorganic solar cells. J Appl Phys 116:54505CrossRef
20.
go back to reference Minemoto T, Murata M (2014) Impact of work function of back contact of perovskite solar cells without hole transport material analyzed by device simulation. Curr Appl Phys 14:1428–1433CrossRef Minemoto T, Murata M (2014) Impact of work function of back contact of perovskite solar cells without hole transport material analyzed by device simulation. Curr Appl Phys 14:1428–1433CrossRef
21.
go back to reference Yang WS, Park B-W, Jung EH, Jeon NJ (2017) Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells. Science 356:1376–1379CrossRef Yang WS, Park B-W, Jung EH, Jeon NJ (2017) Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells. Science 356:1376–1379CrossRef
22.
go back to reference Rajeswari R, Mrinalini M, Prasanthkumar S, Giribabu L (2017) Emerging of inorganic hole transporting materials for perovskite solar cells. Chem Rec 17:681–699CrossRef Rajeswari R, Mrinalini M, Prasanthkumar S, Giribabu L (2017) Emerging of inorganic hole transporting materials for perovskite solar cells. Chem Rec 17:681–699CrossRef
23.
go back to reference Wang H, Yu Z, Jiang X, Li J, Cai B, Yang X, Sun L (2017) Efficient and stable inverted planar perovskite solar cells employing copper(I) iodide hole-transporting layer prepared by solid–gas transformation. Energy Technol 5:1836–1843CrossRef Wang H, Yu Z, Jiang X, Li J, Cai B, Yang X, Sun L (2017) Efficient and stable inverted planar perovskite solar cells employing copper(I) iodide hole-transporting layer prepared by solid–gas transformation. Energy Technol 5:1836–1843CrossRef
24.
go back to reference Christians JA, Fung RCM, Kamat PV (2014) An inorganic hole conductor for organo-lead halide perovskite solar cells. Improved hole conductivity with copper iodide. J Am Chem Soc 136:758–764CrossRef Christians JA, Fung RCM, Kamat PV (2014) An inorganic hole conductor for organo-lead halide perovskite solar cells. Improved hole conductivity with copper iodide. J Am Chem Soc 136:758–764CrossRef
25.
go back to reference Chen W-Y, Deng L-L, Dai S-M, Wang X, Tian C-B, Zhan X-X, Xie S-Y, Huang R-B, Zheng L-S (2015) Low-cost solution-processed copper iodide as an alternative to PEDOT: PSS hole transport layer for efficient and stable inverted planar heterojunction perovskite solar cells. J Mater Chem A 3:19353–19359CrossRef Chen W-Y, Deng L-L, Dai S-M, Wang X, Tian C-B, Zhan X-X, Xie S-Y, Huang R-B, Zheng L-S (2015) Low-cost solution-processed copper iodide as an alternative to PEDOT: PSS hole transport layer for efficient and stable inverted planar heterojunction perovskite solar cells. J Mater Chem A 3:19353–19359CrossRef
26.
go back to reference Qin P, Tanaka S, Ito S, Tetreault N, Manabe K, Nishino H, Nazeeruddin MK, Grätzel M (2014) Inorganic hole conductor-based lead halide perovskite solar cells with 12.4% conversion efficiency. Nat Commun 5:3834CrossRef Qin P, Tanaka S, Ito S, Tetreault N, Manabe K, Nishino H, Nazeeruddin MK, Grätzel M (2014) Inorganic hole conductor-based lead halide perovskite solar cells with 12.4% conversion efficiency. Nat Commun 5:3834CrossRef
27.
go back to reference Kim JH, Liang P-W, Williams ST, Cho N, Chueh C-C, Glaz MS, Ginger DS, Jen AK-Y (2015) High-performance and environmentally stable planar heterojunction perovskite solar cells based on a solution-processed copper-doped nickel oxide hole-transporting layer. Adv Mater 27:695–701CrossRef Kim JH, Liang P-W, Williams ST, Cho N, Chueh C-C, Glaz MS, Ginger DS, Jen AK-Y (2015) High-performance and environmentally stable planar heterojunction perovskite solar cells based on a solution-processed copper-doped nickel oxide hole-transporting layer. Adv Mater 27:695–701CrossRef
28.
go back to reference Karimi E, Ghorashi SMB (2017) Investigation of the influence of different hole-transporting materials on the performance of perovskite solar cells. Opt Int J Light Electron Opt 130:650–658CrossRef Karimi E, Ghorashi SMB (2017) Investigation of the influence of different hole-transporting materials on the performance of perovskite solar cells. Opt Int J Light Electron Opt 130:650–658CrossRef
29.
go back to reference Tan K, Lin P, Wang G, Liu Y, Xu Z, Lin Y (2016) Controllable design of solid-state perovskite solar cells by SCAPS device simulation. Solid State Electron 126:75–80CrossRef Tan K, Lin P, Wang G, Liu Y, Xu Z, Lin Y (2016) Controllable design of solid-state perovskite solar cells by SCAPS device simulation. Solid State Electron 126:75–80CrossRef
30.
go back to reference Garza C, Shaji S, Arato A, Perez Tijerina E, Alan Castillo G, Das Roy TK, Krishnan B (2011) Solar energy materials and solar cells p-type CuSbS2 thin films by thermal diffusion of copper into Sb2S3. Sol Energy Mater Sol Cells 95:2001–2005CrossRef Garza C, Shaji S, Arato A, Perez Tijerina E, Alan Castillo G, Das Roy TK, Krishnan B (2011) Solar energy materials and solar cells p-type CuSbS2 thin films by thermal diffusion of copper into Sb2S3. Sol Energy Mater Sol Cells 95:2001–2005CrossRef
31.
go back to reference Du H-J, Wang W-C, Zhu J-Z (2016) Device simulation of lead-free CH3NH3SnI3 perovskite solar cells with high efficiency. J Chin Phys B 25:108802CrossRef Du H-J, Wang W-C, Zhu J-Z (2016) Device simulation of lead-free CH3NH3SnI3 perovskite solar cells with high efficiency. J Chin Phys B 25:108802CrossRef
32.
go back to reference Zhou J, Bian GQ, Zhu QY, Zhang Y, Li CY, Dai J (2009) Solvothermal crystal growth of CuSbQ2 (Q = S, Se) and the correlation between macroscopic morphology and microscopic structure. J Solid State Chem 40:259–264CrossRef Zhou J, Bian GQ, Zhu QY, Zhang Y, Li CY, Dai J (2009) Solvothermal crystal growth of CuSbQ2 (Q = S, Se) and the correlation between macroscopic morphology and microscopic structure. J Solid State Chem 40:259–264CrossRef
33.
go back to reference Moosakhani S, Alvani AAS, Mohammadpour R, Hannula P-M, Ge Y, Hannula S-P (2018) Platelet CuSbS2 particles with a suitable conduction band position for solar cell applications. Mater Lett 215:157–160CrossRef Moosakhani S, Alvani AAS, Mohammadpour R, Hannula P-M, Ge Y, Hannula S-P (2018) Platelet CuSbS2 particles with a suitable conduction band position for solar cell applications. Mater Lett 215:157–160CrossRef
34.
go back to reference Moosakhani S, Alvani AAS, Mohammadpour R, Hannula P-M, Ge Y, Hannula S-P (2018) Effect of sulfonating agent and ligand chemistry on structural and optical properties of CuSbS2 particles prepared by heat-up method. Cryst Eng Commun 20:1527–1535CrossRef Moosakhani S, Alvani AAS, Mohammadpour R, Hannula P-M, Ge Y, Hannula S-P (2018) Effect of sulfonating agent and ligand chemistry on structural and optical properties of CuSbS2 particles prepared by heat-up method. Cryst Eng Commun 20:1527–1535CrossRef
35.
go back to reference Moosakhani S, Alvani AAS, Mohammadpour R, Ge Y, Hannula S-P (2018) Solution synthesis of CuSbS2 nanocrystals: a new approach to control shape and size. J Alloys Compd 736:190–201CrossRef Moosakhani S, Alvani AAS, Mohammadpour R, Ge Y, Hannula S-P (2018) Solution synthesis of CuSbS2 nanocrystals: a new approach to control shape and size. J Alloys Compd 736:190–201CrossRef
36.
go back to reference Liu F, Zhu J, Wei J, Li Y, Lv M, Yang S, Zhang B, Yao J, Dai S (2014) Numerical simulation: toward the design of high-efficiency planar perovskite solar cells. Appl Phys Lett 104:253508CrossRef Liu F, Zhu J, Wei J, Li Y, Lv M, Yang S, Zhang B, Yao J, Dai S (2014) Numerical simulation: toward the design of high-efficiency planar perovskite solar cells. Appl Phys Lett 104:253508CrossRef
37.
go back to reference Teimouri R, Mohammadpou R (2018) Potential application of CuSbS2 as the hole transport material in perovskite solar cell: a simulation study. Superlattices Microstruct 118:116–122CrossRef Teimouri R, Mohammadpou R (2018) Potential application of CuSbS2 as the hole transport material in perovskite solar cell: a simulation study. Superlattices Microstruct 118:116–122CrossRef
38.
go back to reference Shockley W, Read WT Jr (1952) Statistics of the recombinations of holes and electrons. J Phys Rev 87:835–842CrossRef Shockley W, Read WT Jr (1952) Statistics of the recombinations of holes and electrons. J Phys Rev 87:835–842CrossRef
39.
go back to reference Chen QY, Huang Y, Huang PR, Ma T, Cao C, He Y (2015) Electronegativity explanation on the efficiency-enhancing mechanism of the hybrid inorganic-organic perovskite ABX3 from first-principles study. Chin Phys B 25:27104CrossRef Chen QY, Huang Y, Huang PR, Ma T, Cao C, He Y (2015) Electronegativity explanation on the efficiency-enhancing mechanism of the hybrid inorganic-organic perovskite ABX3 from first-principles study. Chin Phys B 25:27104CrossRef
Metadata
Title
Device simulation of lead-free MASnI3 solar cell with CuSbS2 (copper antimony sulfide)
Authors
Chandni Devi
Rajesh Mehra
Publication date
02-01-2019
Publisher
Springer US
Published in
Journal of Materials Science / Issue 7/2019
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-018-03265-y

Other articles of this Issue 7/2019

Journal of Materials Science 7/2019 Go to the issue

Premium Partners