Skip to main content
Top
Published in:

29-04-2024 | Research

DFootNet: A Domain Adaptive Classification Framework for Diabetic Foot Ulcers Using Dense Neural Network Architecture

Authors: Nishu Bansal, Ankit Vidyarthi

Published in: Cognitive Computation | Issue 5/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Diabetic foot ulcers (DFUs) are a prevalent and serious complication of diabetes, often leading to severe morbidity and even amputations if not timely diagnosed and managed. The increasing prevalence of DFUs poses a significant challenge to healthcare systems worldwide. Accurate and timely classification of DFUs is crucial for effective treatment and prevention of complications. In this paper, we present “DFootNet”, an innovative and comprehensive classification framework for the accurate assessment of diabetic foot ulcers using a dense neural network architecture. Our proposed approach leverages the power of deep learning to automatically extract relevant features from diverse clinical DFU images. The proposed model comprises a multi-layered dense neural network designed to handle the intricate patterns and variations present in different stages and types of DFUs. The network architecture integrates convolutional and fully connected layers, allowing for hierarchical feature extraction and robust feature representation. To evaluate the efficacy of DFootNet, we conducted experiments on a large and diverse dataset of diabetic foot ulcers. Our results demonstrate that DFootNet achieves a remarkable accuracy of 98.87%, precision—99.01%, recall—98.73%, F1-score as 98.86%, and AUC-ROC as 98.13%, outperforming existing methods in distinguishing between ulcer and non-ulcer images. Moreover, our framework provides insights into the decision-making process, offering transparency and interpretability through attention mechanisms that highlight important regions within ulcer images. We also present a comparative analysis of DFootNet’s performance against other popular deep learning models, showcasing its robustness and adaptability across various scenarios.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Monteiro-Soares M, Boyko EJ, Jeffcoate W, Mills JL, Russell D, Morbach S, Game F. Diabetic foot ulcer classifications: a critical review. Diabetes Metab Res Rev. 2020;36:e3272.CrossRef Monteiro-Soares M, Boyko EJ, Jeffcoate W, Mills JL, Russell D, Morbach S, Game F. Diabetic foot ulcer classifications: a critical review. Diabetes Metab Res Rev. 2020;36:e3272.CrossRef
2.
go back to reference Oyibo SO, Jude EB, Tarawneh I, Nguyen HC, Harkless LB, Boulton AJ. A comparison of two diabetic foot ulcer classification systems: the Wagner and the university of Texas wound classification systems. Diabetes Care. 2001;24(1):84–8. Oyibo SO, Jude EB, Tarawneh I, Nguyen HC, Harkless LB, Boulton AJ. A comparison of two diabetic foot ulcer classification systems: the Wagner and the university of Texas wound classification systems. Diabetes Care. 2001;24(1):84–8.
3.
go back to reference Wang X, Yuan CX, Xu B, Yu Z. Diabetic foot ulcers: classification, risk factors and management. World J Diabetes. 2022;13(12):1049.CrossRef Wang X, Yuan CX, Xu B, Yu Z. Diabetic foot ulcers: classification, risk factors and management. World J Diabetes. 2022;13(12):1049.CrossRef
4.
go back to reference Noor S, Zubair M, Ahmad J. Diabetic foot ulcer—a review on pathophysiology, classification and microbial etiology. Diabetes Metab Syndr Clin Res Rev. 2015;9(3):192–9.CrossRef Noor S, Zubair M, Ahmad J. Diabetic foot ulcer—a review on pathophysiology, classification and microbial etiology. Diabetes Metab Syndr Clin Res Rev. 2015;9(3):192–9.CrossRef
5.
go back to reference Monteiro-Soares M, Russell D, Boyko EJ, Jeffcoate W, Mills JL, Morbach S, Game F, International Working Group on the Diabetic Foot (IWGDF). Guidelines on the classification of diabetic foot ulcers (IWGDF 2019). Diabetes Metab Res Rev. 2020;36:e3273. Monteiro-Soares M, Russell D, Boyko EJ, Jeffcoate W, Mills JL, Morbach S, Game F, International Working Group on the Diabetic Foot (IWGDF). Guidelines on the classification of diabetic foot ulcers (IWGDF 2019). Diabetes Metab Res Rev. 2020;36:e3273.
6.
go back to reference Armstrong DG, Lavery LA, et al. Diabetic foot ulcers: prevention, diagnosis and classification. Am Fam Physician. 1998;57(6):1325–32. Armstrong DG, Lavery LA, et al. Diabetic foot ulcers: prevention, diagnosis and classification. Am Fam Physician. 1998;57(6):1325–32.
7.
go back to reference Schaper N. Diabetic foot ulcer classification system for research purposes: a progress report on criteria for including patients in research studies. Diabetes Metab Res Rev. 2004;20(S1):S90–5.CrossRef Schaper N. Diabetic foot ulcer classification system for research purposes: a progress report on criteria for including patients in research studies. Diabetes Metab Res Rev. 2004;20(S1):S90–5.CrossRef
8.
go back to reference Alzubaidi L, Fadhel MA, Oleiwi SR, Al-Shamma O, Zhang J. DFU_QUTNet: diabetic foot ulcer classification using novel deep convolutional neural network. Multimed Tools Appl. 2020;79(21–22):15655–77.CrossRef Alzubaidi L, Fadhel MA, Oleiwi SR, Al-Shamma O, Zhang J. DFU_QUTNet: diabetic foot ulcer classification using novel deep convolutional neural network. Multimed Tools Appl. 2020;79(21–22):15655–77.CrossRef
9.
go back to reference Alzubaidi L, Fadhel MA, Al-Shamma O, Zhang J, Santamaría J, Duan Y, R. Oleiwi S. Towards a better understanding of transfer learning for medical imaging: a case study. Appl Sci. 2020;10(13):4523.CrossRef Alzubaidi L, Fadhel MA, Al-Shamma O, Zhang J, Santamaría J, Duan Y, R. Oleiwi S. Towards a better understanding of transfer learning for medical imaging: a case study. Appl Sci. 2020;10(13):4523.CrossRef
10.
go back to reference Alzubaidi L, Fadhel MA, Al-Shamma O, Zhang J, Santamaría J, Duan Y. Robust application of new deep learning tools: an experimental study in medical imaging. Multimed Tools Appl. 2022;1–29. Alzubaidi L, Fadhel MA, Al-Shamma O, Zhang J, Santamaría J, Duan Y. Robust application of new deep learning tools: an experimental study in medical imaging. Multimed Tools Appl. 2022;1–29.
11.
go back to reference Goyal M, Reeves ND, Davison AK, Rajbhandari S, Spragg J, Yap MH. DFUNet: convolutional neural networks for diabetic foot ulcer classification. IEEE Transactions on Emerging Topics in Computational Intelligence. 2018;4(5):728–39.CrossRef Goyal M, Reeves ND, Davison AK, Rajbhandari S, Spragg J, Yap MH. DFUNet: convolutional neural networks for diabetic foot ulcer classification. IEEE Transactions on Emerging Topics in Computational Intelligence. 2018;4(5):728–39.CrossRef
12.
go back to reference Das SK, Roy P, Mishra AK. DFU_SPNet: a stacked parallel convolution layers based CNN to improve diabetic foot ulcer classification. ICT Express. 2022;8(2):271–5.CrossRef Das SK, Roy P, Mishra AK. DFU_SPNet: a stacked parallel convolution layers based CNN to improve diabetic foot ulcer classification. ICT Express. 2022;8(2):271–5.CrossRef
13.
go back to reference Al-Garaawi N, Ebsim R, Alharan AF, Yap MH. Diabetic foot ulcer classification using mapped binary patterns and convolutional neural networks. Comput Biol Med. 2022;140:105055.CrossRef Al-Garaawi N, Ebsim R, Alharan AF, Yap MH. Diabetic foot ulcer classification using mapped binary patterns and convolutional neural networks. Comput Biol Med. 2022;140:105055.CrossRef
14.
go back to reference Wang L, Pedersen PC, Agu E, Strong DM, Tulu B. Area determination of diabetic foot ulcer images using a cascaded two-stage SVM-based classification. IEEE Trans Biomed Eng. 2016;64(9):2098–109.CrossRef Wang L, Pedersen PC, Agu E, Strong DM, Tulu B. Area determination of diabetic foot ulcer images using a cascaded two-stage SVM-based classification. IEEE Trans Biomed Eng. 2016;64(9):2098–109.CrossRef
15.
go back to reference Ahsan M, Naz S, Ahmad R, Ehsan H, Sikandar A. A deep learning approach for diabetic foot ulcer classification and recognition. Information. 2023;14(1):36.CrossRef Ahsan M, Naz S, Ahmad R, Ehsan H, Sikandar A. A deep learning approach for diabetic foot ulcer classification and recognition. Information. 2023;14(1):36.CrossRef
16.
go back to reference Alzubaidi L, Abbood AA, Fadhel MA, Al-Shamma O, Zhang J. Comparison of hybrid convolutional neural networks models for diabetic foot ulcer classification. J Eng Sci Technol. 2021;16(3):2001–17. Alzubaidi L, Abbood AA, Fadhel MA, Al-Shamma O, Zhang J. Comparison of hybrid convolutional neural networks models for diabetic foot ulcer classification. J Eng Sci Technol. 2021;16(3):2001–17.
17.
go back to reference Santos E, Santos F, Dallyson J, Aires K, Tavares JMR, Veras R. Diabetic foot ulcers classification using a fine-tuned CNNs ensemble. In: 2022 IEEE 35th International Symposium on Computer-Based Medical Systems (CBMS). IEEE; 2022. p. 282–7.CrossRef Santos E, Santos F, Dallyson J, Aires K, Tavares JMR, Veras R. Diabetic foot ulcers classification using a fine-tuned CNNs ensemble. In: 2022 IEEE 35th International Symposium on Computer-Based Medical Systems (CBMS). IEEE; 2022. p. 282–7.CrossRef
18.
go back to reference Galdran A, Carneiro G, Ballester MAG. Convolutional nets versus vision transformers for diabetic foot ulcer classification. In: Diabetic Foot Ulcers Grand Challenge. Springer; 2021. p. 21–9. Galdran A, Carneiro G, Ballester MAG. Convolutional nets versus vision transformers for diabetic foot ulcer classification. In: Diabetic Foot Ulcers Grand Challenge. Springer; 2021. p. 21–9.
19.
go back to reference Amin J, Anjum MA, Sharif A, Sharif MI. A modified classical-quantum model for diabetic foot ulcer classification. Intell Decis Technol. 2022;16(1):23–8. Amin J, Anjum MA, Sharif A, Sharif MI. A modified classical-quantum model for diabetic foot ulcer classification. Intell Decis Technol. 2022;16(1):23–8.
20.
go back to reference Amin J, Sharif M, Anjum MA, Khan HU, Malik MSA, Kadry S. An integrated design for classification and localization of diabetic foot ulcer based on CNN and YOLOV2-DFU models. IEEE Access. 2020;8:228586–97.CrossRef Amin J, Sharif M, Anjum MA, Khan HU, Malik MSA, Kadry S. An integrated design for classification and localization of diabetic foot ulcer based on CNN and YOLOV2-DFU models. IEEE Access. 2020;8:228586–97.CrossRef
21.
go back to reference Vardasca R, Vaz L, Magalhaes C, Seixas A, Mendes J. Towards the diabetic foot ulcers classification with infrared thermal images. In: Proceedings of the 14th Quantitative Infrared Thermography Conference, Berlin, Germany. 2018. p. 25–9. Vardasca R, Vaz L, Magalhaes C, Seixas A, Mendes J. Towards the diabetic foot ulcers classification with infrared thermal images. In: Proceedings of the 14th Quantitative Infrared Thermography Conference, Berlin, Germany. 2018. p. 25–9.
22.
go back to reference Xu Y, Han K, Zhou Y, Wu J, Xie X, Xiang W. Classification of diabetic foot ulcers using class knowledge banks. Front Bioeng Biotechnol. 2022;9:811028.CrossRef Xu Y, Han K, Zhou Y, Wu J, Xie X, Xiang W. Classification of diabetic foot ulcers using class knowledge banks. Front Bioeng Biotechnol. 2022;9:811028.CrossRef
23.
go back to reference Goyal M, Reeves ND, Rajbhandari S, Ahmad N, Wang C, Yap MH. Recognition of Ischaemia and infection in diabetic foot ulcers: dataset and techniques. Comput Biol Med. 2020;117:103616. Goyal M, Reeves ND, Rajbhandari S, Ahmad N, Wang C, Yap MH. Recognition of Ischaemia and infection in diabetic foot ulcers: dataset and techniques. Comput Biol Med. 2020;117:103616.
24.
go back to reference Fadhel MA, Alzubaidi L, Gu Y, Santamaría J, Duan Y. Real-time diabetic foot ulcer classification based on deep learning & parallel hardware computational tools. Multimed Tools Appl. 2024;1–26. Fadhel MA, Alzubaidi L, Gu Y, Santamaría J, Duan Y. Real-time diabetic foot ulcer classification based on deep learning & parallel hardware computational tools. Multimed Tools Appl. 2024;1–26.
25.
go back to reference Biswas S, Mostafiz R, Paul BK, Uddin KMM, Hadi MA, Khanom F. DFU_XAI: a deep learning-based approach to diabetic foot ulcer detection using feature explainability. Biomedical Materials & Devices. 2024;1–21. Biswas S, Mostafiz R, Paul BK, Uddin KMM, Hadi MA, Khanom F. DFU_XAI: a deep learning-based approach to diabetic foot ulcer detection using feature explainability. Biomedical Materials & Devices. 2024;1–21.
26.
go back to reference Raghav SS, Kumar B, Sethiya NK, Lal DK. Diabetic foot ulcer management and treatment: an overview of published patents. Curr Diabetes Rev. 2024;20(3):95–107.CrossRef Raghav SS, Kumar B, Sethiya NK, Lal DK. Diabetic foot ulcer management and treatment: an overview of published patents. Curr Diabetes Rev. 2024;20(3):95–107.CrossRef
27.
go back to reference Ng GW, Gan KF, Liew H, Ge L, Ang G, Molina J, Sun Y, Prakash PS, Harish KB, Lo ZJ. A systematic review and classification of factors influencing diabetic foot ulcer treatment adherence, in accordance with the who dimensions of adherence to long-term therapies. Int J Low Extrem Wounds. 2024;15347346241233962. Ng GW, Gan KF, Liew H, Ge L, Ang G, Molina J, Sun Y, Prakash PS, Harish KB, Lo ZJ. A systematic review and classification of factors influencing diabetic foot ulcer treatment adherence, in accordance with the who dimensions of adherence to long-term therapies. Int J Low Extrem Wounds. 2024;15347346241233962.
28.
go back to reference Chang YC, Huang YY, Hung SY, Yeh JT, Lin CW, Chen IW, Wei HH, Yang HM, Huang CH. Are current wound classifications valid for predicting prognosis in people treated for limb-threatening diabetic foot ulcers? Int Wound J. 2024;21(1):e14338. Chang YC, Huang YY, Hung SY, Yeh JT, Lin CW, Chen IW, Wei HH, Yang HM, Huang CH. Are current wound classifications valid for predicting prognosis in people treated for limb-threatening diabetic foot ulcers? Int Wound J. 2024;21(1):e14338.
29.
go back to reference Qayyum A, Benzinou A, Mazher M, Meriaudeau F. Efficient multi-model vision transformer based on feature fusion for classification of dfuc2021 challenge. In: Diabetic Foot Ulcers Grand Challenge. Springer; 2021. p. 62–75. Qayyum A, Benzinou A, Mazher M, Meriaudeau F. Efficient multi-model vision transformer based on feature fusion for classification of dfuc2021 challenge. In: Diabetic Foot Ulcers Grand Challenge. Springer; 2021. p. 62–75.
30.
go back to reference Chakraborty B, Nakka SS, Sanada T. An efficient ensemble of deep neural networks for detection and classification of diabetic foot ulcers images. DBKDA. 2023;2023:55. Chakraborty B, Nakka SS, Sanada T. An efficient ensemble of deep neural networks for detection and classification of diabetic foot ulcers images. DBKDA. 2023;2023:55.
Metadata
Title
DFootNet: A Domain Adaptive Classification Framework for Diabetic Foot Ulcers Using Dense Neural Network Architecture
Authors
Nishu Bansal
Ankit Vidyarthi
Publication date
29-04-2024
Publisher
Springer US
Published in
Cognitive Computation / Issue 5/2024
Print ISSN: 1866-9956
Electronic ISSN: 1866-9964
DOI
https://doi.org/10.1007/s12559-024-10282-4

Premium Partner