We start with explicit reference to a local basis set,
\(|\phi _{\varvec{\mu }}\rangle\), and the dual (biorthogonal) basis,
\(|\beta _{\varvec{\nu }}\rangle\), such that
\(\langle \beta _{\varvec{\mu }}|\phi _{\varvec{\nu }}\rangle = \delta _{\varvec{\mu } \varvec{\nu }}\) [
27]. The corresponding creation and annihilation operators follow as
\(a_{\varvec{\mu }}^{\dagger } |0\rangle = |\phi _{\varvec{\mu }}\rangle\) and
\(b_{\varvec{\mu }}^{\dagger } |0\rangle = |\beta _{\varvec{\mu }}\rangle = \sum _{\varvec{\mu }} |\phi _{\varvec{\mu }}\rangle S^{-1}_{\varvec{\mu } \varvec{\nu }}\), where
\(S_{\varvec{\mu } \varvec{\nu }}\) is the overlap matrix. For brevity, the index
\(\varvec{\mu }\) refers to a multi-index, identifying the atomic position and orbital, e.g.,
\(\varvec{\mu } = (\vec {R}_l,\vec {R}_s,\mu )\) corresponds to lattice
l, sublattice
s and atomic orbital
\(\mu\). Using the local basis set, we construct field operators,
$$\begin{aligned} \hat{\Psi }^{\dagger }(\vec {r})=\sum _{\mu ,s,l} \phi ^*_{\mu } (\vec {r}-\vec {R}_{ls}) \hat{b}^{\dagger }_{s\mu }(l)\;, \end{aligned}$$
(3)
where the atomic orbitals,
\(\phi _{\mu }(\vec {r}-\vec {R}_{ls})\), are located at the
equilibrium positions of the molecule or lattice. We build the usual Hamiltonian operator in second quantization,
$$\begin{aligned} \hat{H} = \sum _{l,s,l',s'}\sum _{\alpha ,\beta } H_{s\alpha , s' \beta } (l,l') \hat{b}_{s \alpha }^{\dagger }(l) \hat{b}_{s' \beta }(l')\;. \end{aligned}$$
(4)
The transformation to the Bloch eigenstates, labeled by
\(\vec {k}\)-vectors and band indices
m, employs the usual transformation,
$$\begin{aligned} \hat{b}_{s \alpha }(l) = \frac{1}{\sqrt{N_c}}\sum _{\vec {k},m} U_{s \alpha , m}(\vec {k}) \hat{c}_{m}(\vec {k}) e^{i \vec {k}\cdot \vec {R}_l}\;, \end{aligned}$$
(5)
where
\(N_c\) denotes the number of cells. The eigenstates
\(U(\vec {k})\) satisfy the secular equations,
\(H_{s \mu , s' \nu }(\vec {k}) U_{s' \nu ,m}(\vec {k})=S_{s \mu , s' \nu }(\vec {k}) U_{s' \nu ,m}(\vec {k}) \varepsilon _m(\vec {k})\). Translational invariance of the Hamiltonian and the overlap matrices, e.g.,
\(H(l,l')=H(l'-l)\), is used to Fourier transform and subsequently diagonalize the Hamiltonian, such that,
\(\hat{H}=\sum _{k,m} \varepsilon _m(\vec {k}) \hat{c}^{\dagger }_{m}(\vec {k})\hat{c}_{m}(\vec {k})\).
To proceed with the derivation of the electron–phonon couplings we consider the perturbation of the Hamiltonian due to a deformation of the lattice. The corresponding Hamiltonian variation can be written as,
$$\begin{aligned} \delta \hat{H}=\int {\hbox {d}r \hat{\Psi }^{\dagger }(\vec {r}) \delta H(\vec {r}) \hat{\Psi }(\vec {r})}\;, \end{aligned}$$
(6)
where
\(\delta H(\vec {r})\) is the perturbation of the single-particle Hamiltonian (
2). Note that the field operators are defined in terms of the equilibrium positions and are thus not changing with atomic displacements. Therefore, the explicit form of the variation due to phonon displacements reads,
$$\begin{aligned} \hat{H}_{el-ph}&= \sum _{l'',s''} \sum _{ \begin{array}{c} l,s,\mu \\ l',s',\nu \end{array}} \hat{b}^{\dagger }_{s\mu }(l) \hat{b}_{s'\nu }(l') \hat{u}_{l'' s''} \nonumber \\&\quad \times \int {\hbox {d}r \phi ^*_{ls\mu }(\vec {r}) \frac{\partial H(\vec {r})}{\partial \vec {R}_{l''s''}} \phi _{l's'\nu }(\vec {r})}\;, \end{aligned}$$
(7)
where
$$\begin{aligned} \hat{u}_{ls}&= \frac{1}{\sqrt{N_c}}\sum _{\vec {q}, \lambda } \sqrt{\frac{\hbar }{2 \omega _{\lambda }(\vec {q})} } \frac{\textbf{e}^{\lambda }_s(\vec {q})}{\sqrt{m_s}} e^{i \vec {q}\cdot (\vec {R}_l+\vec {R}_s)}\nonumber \\&\quad \times \left[ \hat{d}_{\lambda }(\vec {q}) + \hat{d}^{\dagger }_{\lambda }(-\vec {q}) \right] \end{aligned}$$
(8)
is the displacement operator in terms of the phonon states, labeled by the
\(\vec {q}\)-vector and the polarization,
\(\lambda\). The mass of atom
s is denoted by
\(m_s\). The phase factors associated with the sublattice positions,
\(\vec {R}_s\), are sometimes included in the polarization states,
\(\tilde{\textbf{e}}^{\lambda }_s(\vec {q})=\textbf{e}^{\lambda }_s(\vec {q})e^{i \vec {q}\cdot \vec {R}_s}\), depending on the definition of the dynamical matrix [
28]. In
phonopy [
29], the phases are consistent with Eq. (
8).
The last steps of our derivation involve writing the matrix elements in Eq. (
7) in terms of variations of the usual TB matrix elements. This is accomplished by the identity,
$$\begin{aligned} \sum _{s''} \left\langle {\phi _s}| \frac{\partial H}{\partial \vec {R}_{s''}} |\phi _{s'} \right\rangle \hat{u}_{s''}&= \frac{\partial }{\partial \vec {R}_{s}} \langle {\phi _s}| H |\phi _{s'}\rangle (\hat{u}_{s}-\hat{u}_{s'}) \nonumber \\&\quad -\left\langle \frac{\partial \phi _s}{\partial \vec {R}_{s}}\right| H |\phi _{s'}\rangle \hat{u}_{s} -\langle \phi _{s}| H \left| \frac{\partial \phi _{s'}}{\partial \vec {R}_{s'}}\right\rangle \hat{u}_{s'}\;, \end{aligned}$$
(9)
which only shows sublattice indices in order to simplify the notation. In Eq. (
9), we have explicitly used the two-center approximation of the DFTB matrix elements, allowing to remove the summation over
\(s''\), and the relationship
\(\partial _{\vec {R}_{s'}}H_{ss'} = -\partial _{\vec {R}_s} H_{ss'}\). A consequence of this approximation is that the on-site (
\(s=s'\)) electron–phonon coupling matrix-elements are zero. Further simplifications are possible by inserting the identity,
\(\sum _{ss'} |\phi _s\rangle S^{-1}_{ss'} \langle \phi _{s'}| = \hat{I}\), and using
\(\langle \partial _{\vec {R}_{s}} \phi _s |\phi _{s'}\rangle =\partial _{\vec {R}_{s}} S_{ss'}\), such that,
$$\begin{aligned} \hat{H}_{el-ph}&= \sum _{s\mu ,s'\nu } \hat{b}^{\dagger }_{s\mu } \hat{b}_{s'\nu } \nonumber \\&\quad \times \left\{ \left[ \frac{\partial H_{s\mu , s'\nu }}{\partial \vec {R}_s}-\sum _{\bar{s}\sigma ,\bar{r}\tau } \frac{\partial S_{s\mu , \bar{s} \sigma }}{\partial \vec {R}_s} S^{-1}_{\bar{s} \sigma , \bar{r} \tau }H_{\bar{r}\tau , s' \nu } \right] \hat{u}_{s} \right. \nonumber \\&\quad - \left. \left[ \frac{\partial H_{s\mu , s'\nu }}{\partial \vec {R}_{s}} - \sum _{\bar{s}\sigma ,\bar{r}\tau } H_{s\mu , \bar{s} \sigma }S^{-1}_{\bar{s} \sigma , \bar{r} \tau }\frac{\partial S_{\bar{r} \tau ,s'\nu }}{\partial \vec {R}_{\bar{r}}} \right] \hat{u}_{s'} \right\} \;. \end{aligned}$$
(10)
Finally, it is convenient to rotate to the Bloch eigenstates (
5) of the unperturbed Hamiltonian. Equation (
10) contains four terms: the first and the third term lead to expressions containing,
$$\begin{aligned}&\frac{1}{N_c} \sum _{\ell ,\ell '} U^{*}_{n,s\mu }(\vec {k}) \frac{\partial H_{s\mu ,s'\nu }(\ell , \ell ')}{\partial \vec {R}_{\ell s}} U_{s'\nu ,m}(\vec {k}') \nonumber \\&\quad \times e^{i (\vec {k}'+\vec {q}-\vec {k}) \cdot \vec {R}_{\ell }} e^{i \vec {k}'\cdot (\vec {R}_{\ell '} -\vec {R}_{\ell })} \;, \end{aligned}$$
(11)
which, after the change of variables,
\(\ell ''=\ell '-\ell\), can be transformed to
$$\begin{aligned}&U^{*}_{n,s\mu }(\vec {k}) \frac{\partial H_{s\mu ,s'\nu }}{\partial \vec {R}_s}(\vec {k}-\vec {q}) U_{s'\nu ,m} \left( \vec {k}-\vec {q} \right) \nonumber \\&\quad \times \hat{c}^{\dagger }_{n}(\vec {k})\hat{c}_{m}(\vec {k}-\vec {q})\;. \end{aligned}$$
(12)
In the second and the fourth term of Eq. (
10),
\(S^{-1}\) can be removed using the secular equation in favor of
\(\varepsilon _n(\vec {k})\) and
\(\varepsilon _m(\vec {k}')\). Collecting everything it is easy to obtain the equation of motion in the Heisenberg picture,
$$\begin{aligned} \imath \hbar \partial _t \hat{c}_{n}(\vec {k})&= \varepsilon _{n}(\vec {k}) \hat{c}_{n}(\vec {k}) \nonumber \\&\quad + \frac{1}{\sqrt{N_c}} \sum _{\vec {q}, \lambda } \sum _{m} g_{nm}^\lambda (\vec {k}-\vec {q}, \vec {q}) \hat{c}_{m}(\vec {k}-\vec {q}) \nonumber \\&\quad \times \left[ \hat{d}^\dagger _{\lambda } (-\vec {q}) + \hat{d}_{\lambda }(\vec {q})\right] \;, \end{aligned}$$
(13)
where the electron–phonon couplings can be expressed as,
$$\begin{aligned} g^{\lambda }_{nm}(\vec {k},\vec {q})&= \sqrt{\frac{\hbar }{2 \omega _{\lambda }(\vec {q})} } \sum _{s,\mu ,s',\nu } U^{*}_{n,s\mu } (\vec {k}+\vec {q}) \nonumber \\&\quad \times \left\{ \left[ \frac{\partial H_{s \mu , s' \nu }}{\partial \vec {R}_s} (\vec {k})- \varepsilon _m (\vec {k}) \frac{\partial S_{s \mu , s' \nu }}{\partial \vec {R}_s} (\vec {k})\right] \right. \frac{\tilde{\textbf{e}}^{\lambda }_s (\vec {q})}{\sqrt{m_s}} \nonumber \\&\quad - \left. \left[ \frac{\partial H_{s \mu , s' \nu }}{\partial \vec {R}_s} (\vec {k}+\vec {q}) - \varepsilon _n(\vec {k}+\vec {q}) \frac{\partial S_{s \mu , s' \nu }}{\partial \vec {R}_s}(\vec {k}+\vec {q})\right] \right. \nonumber \\&\quad \times \left. \frac{\tilde{\textbf{e}}^{\lambda }_{s'}(\vec {q})}{\sqrt{m_{s'}}} \right\} U_{s'\nu ,m}(\vec {k})\;. \end{aligned}$$
(14)
The difference of terms in
\(\vec {k}\) and
\(\vec {k}+\vec {q}\) within the curly braces is a consequence of the fact that the coupling depends on the relative displacement
\(\vec {u}_{\ell ' s'} -\vec {u}_{\ell s}\). On the other hand, the matrices
\(U(\vec {k})\) and
\(U(\vec {k}+\vec {q})\) map local orbitals to eigenvectors, where the incoming electron with momentum
\(\vec {k}\) is scattered into
\(\vec {k}+\vec {q}\). In fact, Umklapp processes come naturally into play in Eq. (
14), since the lattice summation is always satisfied up to a reciprocal lattice vector,
\(\delta _{\vec {k}',\vec {k}+\vec {q}+G}\). Consequently, momentum vectors are always to be understood as crystal quasi-momentum vectors. Equation (
14) is in agreement with the result of [
24], equation (2.31). We observe once more that the perturbation in Eqs. (
6) and (
7) is evaluated using the unperturbed basis set. Different expressions are obtained if the basis set is displaced together with the atomic oscillations. This, for instance, comes out automatically when considering some form of perturbations to Eq. (
4) leading to variations of the Hamiltonian and overlap matrix elements, rather than matrix elements of the perturbed Hamiltonian, as pointed out in [
24]. Interestingly, if one starts from the Hamiltonian (
4), expresses the equation of motion for
\(\hat{b}_{s \mu }\) and then considers perturbations to the matrix elements
\(H+\delta H\) and
\(S+\delta S\), after some lengthy algebra arrives at a final equation for the couplings which is identical to Eq. (
14) except that
\(\varepsilon _n(\vec {k}+\vec {q})\rightarrow \varepsilon _m(\vec {k})\) in the last term. See Supporting Information for a more detailed discussion.