Skip to main content
Top

Hint

Swipe to navigate through the articles of this issue

Published in: Neural Computing and Applications 34/2023

19-09-2023 | Original Article

Diagnosis of breast cancer molecular subtypes using machine learning models on unimodal and multimodal datasets

Authors: Samta Rani, Tanvir Ahmad, Sarfaraz Masood, Chandni Saxena

Published in: Neural Computing and Applications | Issue 34/2023

Log in

Abstract

Breast cancer is a significant global health concern, with millions of cases and deaths each year. Accurate diagnosis is critical for timely treatment and medication. Machine learning techniques have shown promising results in detecting breast cancer. Previous studies have primarily used single-modality data for breast cancer diagnosis. Hence, this work aims to mobilize the benefits of multimodal data over unimodality samples. This study proposes a custom deep learning-based model pipeline that works over this multimodal data. This work has been separated into three phases. Phase 1 and Phase 2 under the unimodal category examine gene expression data and histopathological images separately. The Cancer Genome Atlas makes these datasets available. In Phase 3, the proposed pipeline operates on both data types’ samples for each patient in the multimodal category. This study investigates how data pre-processing (cleaning, transformation, reduction) and cascaded filtering affect model performance. Precision, recall, f1-score, and accuracy assessed the models, whereas L2 regularization, exponentially weighted moving average, and transfer learning minimized over-fitting. A custom deep neural network and support vector machine obtained 86% accuracy in Phase 1, whereas the VGG16 model reached 80.21% accuracy in Phase 2. In Phase 3, the curated multimodal dataset was applied to a custom deep learning pipeline (VGG16 backbone with hyper-tuned machine learning models as head classifiers) to achieve 94% accuracy, demonstrating the importance of multimodal data over unimodal in breast cancer subtype classification. These findings highlight the importance of multimodal data for breast cancer diagnosis and subtype prediction.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference DeSantis CE, Bray F, Ferlay J, Lortet-Tieulent J, Anderson BO, Jemal A (2015) International variation in female breast cancer incidence and mortality rates international variation in female breast cancer rates. Cancer Epidemiol Biomark Prevent 24(10):1495–1506 CrossRef DeSantis CE, Bray F, Ferlay J, Lortet-Tieulent J, Anderson BO, Jemal A (2015) International variation in female breast cancer incidence and mortality rates international variation in female breast cancer rates. Cancer Epidemiol Biomark Prevent 24(10):1495–1506 CrossRef
2.
go back to reference Goldin A, Venditti JM, Macdonald JS, Muggia FM, Henney JE, Devita Jr VT (1981) Current results of the screening program at the division of cancer treatment, national cancer institute. Eur J Cancer (1965) 17(2), 129–142 Goldin A, Venditti JM, Macdonald JS, Muggia FM, Henney JE, Devita Jr VT (1981) Current results of the screening program at the division of cancer treatment, national cancer institute. Eur J Cancer (1965) 17(2), 129–142
3.
go back to reference Momenimovahed Z, Salehiniya H (2019) Epidemiological characteristics of and risk factors for breast cancer in the world. Breast Cancer Targets Ther 151–164 Momenimovahed Z, Salehiniya H (2019) Epidemiological characteristics of and risk factors for breast cancer in the world. Breast Cancer Targets Ther 151–164
4.
go back to reference Siegel RL, Miller KD, Wagle NS, Jemal A (2023) Cancer statistics. CA Cancer J Clin 73(1):17–48 CrossRef Siegel RL, Miller KD, Wagle NS, Jemal A (2023) Cancer statistics. CA Cancer J Clin 73(1):17–48 CrossRef
5.
go back to reference Arnold M, Morgan E, Rumgay H, Mafra A, Singh D, Laversanne M, Vignat J, Gralow JR, Cardoso F, Siesling S et al (2022) Current and future burden of breast cancer: global statistics for 2020 and 2040. Breast 66:15–23 CrossRef Arnold M, Morgan E, Rumgay H, Mafra A, Singh D, Laversanne M, Vignat J, Gralow JR, Cardoso F, Siesling S et al (2022) Current and future burden of breast cancer: global statistics for 2020 and 2040. Breast 66:15–23 CrossRef
6.
go back to reference Kuhl CK (2023) What the future holds for the screening, diagnosis, and treatment of breast cancer. Radiological Society of North America Kuhl CK (2023) What the future holds for the screening, diagnosis, and treatment of breast cancer. Radiological Society of North America
7.
go back to reference Unger-Saldaña K (2014) Challenges to the early diagnosis and treatment of breast cancer in developing countries. World J Clin Oncol 5(3):465 CrossRef Unger-Saldaña K (2014) Challenges to the early diagnosis and treatment of breast cancer in developing countries. World J Clin Oncol 5(3):465 CrossRef
8.
go back to reference Dileep G, Gyani SGG (2022) Artificial intelligence in breast cancer screening and diagnosis. Cureus 14(10):e30318 Dileep G, Gyani SGG (2022) Artificial intelligence in breast cancer screening and diagnosis. Cureus 14(10):e30318
9.
go back to reference Nassif AB, Talib MA, Nasir Q, Afadar Y, Elgendy O (2022) Breast cancer detection using artificial intelligence techniques: a systematic literature review. Artif Intell Med 102276 Nassif AB, Talib MA, Nasir Q, Afadar Y, Elgendy O (2022) Breast cancer detection using artificial intelligence techniques: a systematic literature review. Artif Intell Med 102276
10.
go back to reference Yersal O, Barutca S (2014) Biological subtypes of breast cancer: prognostic and therapeutic implications. World J Clin Oncol 5(3):412 CrossRef Yersal O, Barutca S (2014) Biological subtypes of breast cancer: prognostic and therapeutic implications. World J Clin Oncol 5(3):412 CrossRef
11.
go back to reference Lipkova J, Chen RJ, Chen B, Lu MY, Barbieri M, Shao D, Vaidya AJ, Chen C, Zhuang L, Williamson DF et al (2022) Artificial intelligence for multimodal data integration in oncology. Cancer Cell 40(10):1095–1110 CrossRef Lipkova J, Chen RJ, Chen B, Lu MY, Barbieri M, Shao D, Vaidya AJ, Chen C, Zhuang L, Williamson DF et al (2022) Artificial intelligence for multimodal data integration in oncology. Cancer Cell 40(10):1095–1110 CrossRef
12.
go back to reference Kurt F, Agaoglu M, Arga KY (2022) Precision oncology: an ensembled machine learning approach to identify a candidate MRNA panel for stratification of patients with breast cancer. OMICS 26(9):504–511 CrossRef Kurt F, Agaoglu M, Arga KY (2022) Precision oncology: an ensembled machine learning approach to identify a candidate MRNA panel for stratification of patients with breast cancer. OMICS 26(9):504–511 CrossRef
13.
go back to reference Kim AA, Zaim SR, Subbian V (2020) Assessing reproducibility and veracity across machine learning techniques in biomedicine: a case study using TCGA data. Int J Med Inform 141:104148 CrossRef Kim AA, Zaim SR, Subbian V (2020) Assessing reproducibility and veracity across machine learning techniques in biomedicine: a case study using TCGA data. Int J Med Inform 141:104148 CrossRef
14.
go back to reference Phan NN, Huang C-C, Tseng L-M, Chuang EY (2021) Predicting breast cancer gene expression signature by applying deep convolutional neural networks from unannotated pathological images. Front Oncol 11:769447 CrossRef Phan NN, Huang C-C, Tseng L-M, Chuang EY (2021) Predicting breast cancer gene expression signature by applying deep convolutional neural networks from unannotated pathological images. Front Oncol 11:769447 CrossRef
15.
go back to reference Xie J, Liu R, Luttrell J IV, Zhang C (2019) Deep learning based analysis of histopathological images of breast cancer. Front Genet 10:80 CrossRef Xie J, Liu R, Luttrell J IV, Zhang C (2019) Deep learning based analysis of histopathological images of breast cancer. Front Genet 10:80 CrossRef
16.
go back to reference Liu T, Huang J, Liao T, Pu R, Liu S, Peng Y (2022) A hybrid deep learning model for predicting molecular subtypes of human breast cancer using multimodal data. Irbm 43(1):62–74 CrossRef Liu T, Huang J, Liao T, Pu R, Liu S, Peng Y (2022) A hybrid deep learning model for predicting molecular subtypes of human breast cancer using multimodal data. Irbm 43(1):62–74 CrossRef
17.
go back to reference Ash JT, Darnell G, Munro D, Engelhardt BE (2021) Joint analysis of expression levels and histological images identifies genes associated with tissue morphology. Nat Commun 12(1):1609 CrossRef Ash JT, Darnell G, Munro D, Engelhardt BE (2021) Joint analysis of expression levels and histological images identifies genes associated with tissue morphology. Nat Commun 12(1):1609 CrossRef
18.
go back to reference Sun D, Li A, Tang B, Wang M (2018) Integrating genomic data and pathological images to effectively predict breast cancer clinical outcome. Comput Methods Programs Biomed 161:45–53 CrossRef Sun D, Li A, Tang B, Wang M (2018) Integrating genomic data and pathological images to effectively predict breast cancer clinical outcome. Comput Methods Programs Biomed 161:45–53 CrossRef
19.
go back to reference MacFadyen C, Duraiswamy A, Harris-Birtill D (2023) Classification of hyper-scale multimodal imaging datasets. medRxiv 2023-01 MacFadyen C, Duraiswamy A, Harris-Birtill D (2023) Classification of hyper-scale multimodal imaging datasets. medRxiv 2023-01
20.
21.
go back to reference Popovici V, Budinska E, Čápková L, Schwarz D, Dušek L, Feit J, Jaggi R (2016) Joint analysis of histopathology image features and gene expression in breast cancer. BMC Bioinform 17(1):1–9 CrossRef Popovici V, Budinska E, Čápková L, Schwarz D, Dušek L, Feit J, Jaggi R (2016) Joint analysis of histopathology image features and gene expression in breast cancer. BMC Bioinform 17(1):1–9 CrossRef
22.
go back to reference M’Sabah CEL, Bouziane A, Ferdi Y (2021) A survey on deep learning methods for cancer diagnosis using multimodal data fusion. In: 2021 international conference on e-health and bioengineering (EHB), pp 1–4. IEEE M’Sabah CEL, Bouziane A, Ferdi Y (2021) A survey on deep learning methods for cancer diagnosis using multimodal data fusion. In: 2021 international conference on e-health and bioengineering (EHB), pp 1–4. IEEE
23.
go back to reference Hou Y (2020) Breast cancer pathological image classification based on deep learning. J Xray Sci Technol 28(4):727–738 Hou Y (2020) Breast cancer pathological image classification based on deep learning. J Xray Sci Technol 28(4):727–738
24.
go back to reference Zhu Z, Albadawy E, Saha A, Zhang J, Harowicz MR, Mazurowski MA (2018) Breast cancer molecular subtype classification using deep features: preliminary results. In: Medical imaging 2018: computer-aided diagnosis, vol 10575. SPIE, pp 651–656 Zhu Z, Albadawy E, Saha A, Zhang J, Harowicz MR, Mazurowski MA (2018) Breast cancer molecular subtype classification using deep features: preliminary results. In: Medical imaging 2018: computer-aided diagnosis, vol 10575. SPIE, pp 651–656
25.
go back to reference Kotsiantis SB, Zaharakis I, Pintelas P et al (2007) Supervised machine learning: a review of classification techniques. Emerging Artif Intell Appl Comput Eng 160(1):3–24 Kotsiantis SB, Zaharakis I, Pintelas P et al (2007) Supervised machine learning: a review of classification techniques. Emerging Artif Intell Appl Comput Eng 160(1):3–24
26.
go back to reference Dwivedi AK (2018) Artificial neural network model for effective cancer classification using microarray gene expression data. Neural Comput Appl 29:1545–1554 CrossRef Dwivedi AK (2018) Artificial neural network model for effective cancer classification using microarray gene expression data. Neural Comput Appl 29:1545–1554 CrossRef
27.
go back to reference Redzuwan R, Radzi NAM, Din NM, Mustafa I (2015) Affine versus projective transformation for sift and ransac image matching methods. In: 2015 IEEE international conference on signal and image processing applications (ICSIPA). IEEE, pp 447–451 Redzuwan R, Radzi NAM, Din NM, Mustafa I (2015) Affine versus projective transformation for sift and ransac image matching methods. In: 2015 IEEE international conference on signal and image processing applications (ICSIPA). IEEE, pp 447–451
28.
go back to reference Rana R, Verma A (2014) Comparison and enhancement of digital image by using canny filter and sobel filter. IOSR J Comput Eng 16(1):06–10 CrossRef Rana R, Verma A (2014) Comparison and enhancement of digital image by using canny filter and sobel filter. IOSR J Comput Eng 16(1):06–10 CrossRef
29.
go back to reference Jeong W-K, Pfister H, Fatica M (2011) Medical image processing using GPU-accelerated ITK image filters. In: GPU computing gems emerald edition. Elsevier, New York, pp. 737–749 Jeong W-K, Pfister H, Fatica M (2011) Medical image processing using GPU-accelerated ITK image filters. In: GPU computing gems emerald edition. Elsevier, New York, pp. 737–749
30.
go back to reference Suzuki K (2017) Overview of deep learning in medical imaging. Radiol Phys Technol 10(3):257–273 CrossRef Suzuki K (2017) Overview of deep learning in medical imaging. Radiol Phys Technol 10(3):257–273 CrossRef
31.
go back to reference Alzubaidi L, Fadhel MA, Al-Shamma O, Zhang J, Santamaría J, Duan Y, Oleiwi SR (2020) Towards a better understanding of transfer learning for medical imaging: a case study. Appl Sci 10(13):4523 CrossRef Alzubaidi L, Fadhel MA, Al-Shamma O, Zhang J, Santamaría J, Duan Y, Oleiwi SR (2020) Towards a better understanding of transfer learning for medical imaging: a case study. Appl Sci 10(13):4523 CrossRef
32.
go back to reference Boumaraf S, Liu X, Zheng Z, Ma X, Ferkous C (2021) A new transfer learning based approach to magnification dependent and independent classification of breast cancer in histopathological images. Biomed Signal Process Control 63:102192 CrossRef Boumaraf S, Liu X, Zheng Z, Ma X, Ferkous C (2021) A new transfer learning based approach to magnification dependent and independent classification of breast cancer in histopathological images. Biomed Signal Process Control 63:102192 CrossRef
33.
go back to reference Tammina S (2019) Transfer learning using VGG-16 with deep convolutional neural network for classifying images. Int J Sci Res Publ (IJSRP) 9(10):143–150 Tammina S (2019) Transfer learning using VGG-16 with deep convolutional neural network for classifying images. Int J Sci Res Publ (IJSRP) 9(10):143–150
34.
go back to reference Khalid S, Khalil T, Nasreen S (2014) A survey of feature selection and feature extraction techniques in machine learning. In: 2014 science and information conference. IEEE, pp 372–378 Khalid S, Khalil T, Nasreen S (2014) A survey of feature selection and feature extraction techniques in machine learning. In: 2014 science and information conference. IEEE, pp 372–378
35.
go back to reference Ross AA, Govindarajan R (2005) Feature level fusion of hand and face biometrics. In: Biometric technology for human identification II, vol 5779. SPIE, pp 196–204 Ross AA, Govindarajan R (2005) Feature level fusion of hand and face biometrics. In: Biometric technology for human identification II, vol 5779. SPIE, pp 196–204
36.
go back to reference Taud H, Mas J (2018) Multilayer perceptron (MLP). Geomatic approaches for modeling land change scenarios, pp 451–455 Taud H, Mas J (2018) Multilayer perceptron (MLP). Geomatic approaches for modeling land change scenarios, pp 451–455
37.
go back to reference Tohka J, Van Gils M (2021) Evaluation of machine learning algorithms for health and wellness applications: a tutorial. Comput Biol Med 132:104324 CrossRef Tohka J, Van Gils M (2021) Evaluation of machine learning algorithms for health and wellness applications: a tutorial. Comput Biol Med 132:104324 CrossRef
38.
go back to reference Takahashi K, Yamamoto K, Kuchiba A, Koyama T (2022) Confidence interval for micro-averaged f 1 and macro-averaged f 1 scores. Appl Intell 52(5):4961–4972 CrossRef Takahashi K, Yamamoto K, Kuchiba A, Koyama T (2022) Confidence interval for micro-averaged f 1 and macro-averaged f 1 scores. Appl Intell 52(5):4961–4972 CrossRef
39.
40.
go back to reference Viering T, Loog M (2022) The shape of learning curves: a review. IEEE Trans Pattern Anal Mach Intell Viering T, Loog M (2022) The shape of learning curves: a review. IEEE Trans Pattern Anal Mach Intell
41.
go back to reference Brownlee J (2018) What is the difference between a batch and an epoch in a neural network. Mach Learn Mastery 20 Brownlee J (2018) What is the difference between a batch and an epoch in a neural network. Mach Learn Mastery 20
42.
go back to reference Sun D, Wang M, Li A (2018) A multimodal deep neural network for human breast cancer prognosis prediction by integrating multi-dimensional data. IEEE/ACM Trans Comput Biol Bioinf 16(3):841–850 CrossRef Sun D, Wang M, Li A (2018) A multimodal deep neural network for human breast cancer prognosis prediction by integrating multi-dimensional data. IEEE/ACM Trans Comput Biol Bioinf 16(3):841–850 CrossRef
43.
go back to reference Liu H, Dai Z, So D, Le QV (2021) Pay attention to MLPS. Adv Neural Inf Process Syst 34:9204–9215 Liu H, Dai Z, So D, Le QV (2021) Pay attention to MLPS. Adv Neural Inf Process Syst 34:9204–9215
Metadata
Title
Diagnosis of breast cancer molecular subtypes using machine learning models on unimodal and multimodal datasets
Authors
Samta Rani
Tanvir Ahmad
Sarfaraz Masood
Chandni Saxena
Publication date
19-09-2023
Publisher
Springer London
Published in
Neural Computing and Applications / Issue 34/2023
Print ISSN: 0941-0643
Electronic ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-023-09005-x

Other articles of this Issue 34/2023

Neural Computing and Applications 34/2023 Go to the issue

Premium Partner