Skip to main content
Top

2023 | OriginalPaper | Chapter

Diagnosis of Plant Diseases by Image Processing Model for Sustainable Solutions

Authors : Sasmita Pani, Jyotiranjan Rout, Zeenat Afroz, Madhusmita Dey, Mahesh Kumar Sahoo, Amar Kumar Das

Published in: Intelligent Systems and Machine Learning

Publisher: Springer Nature Switzerland

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The first step in preventing losses in agricultural product output and quantity is to identify plant diseases. A significant loss in crop output and market economic value results due to incorrect identification. The farmers used their own eyesight or prior knowledge of plant illnesses to identify plant ailments. When farmers are doing this for a single plant, it is possible, but when it involves many distinct plants, it is much more challenging to detect and takes a lot of effort. Therefore, it is preferable to utilize image processing to detect plants diseases. Image acquisition, picture pre-processing, image segmentation, feature extraction, and classification are all processes in this approach to diagnose the plant disease. In this study, we would like to present the procedures for identifying plant diseases from their leaf photos. We have used VGG 19 model for efficient processing of trained data and test data. This paper aims to support and help the green house farmers in an efficient way.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Mohanty, S.P., Hughes, D.P., Salathé, M.: Using deep learning for image-based plant disease detection. Front. Plant Sci. 7, 14199 (2016)CrossRef Mohanty, S.P., Hughes, D.P., Salathé, M.: Using deep learning for image-based plant disease detection. Front. Plant Sci. 7, 14199 (2016)CrossRef
2.
go back to reference Rangarajan, A.K., Purushothaman, R., Ramesh, A.: Tomato crop disease classification using pre-trained deep learning algorithm. Procedia Comput. Sci. 133, 1040–1047 (2018)CrossRef Rangarajan, A.K., Purushothaman, R., Ramesh, A.: Tomato crop disease classification using pre-trained deep learning algorithm. Procedia Comput. Sci. 133, 1040–1047 (2018)CrossRef
3.
go back to reference Too, J., Abdullah, A.R., Mohd Saad, N.: A new co-evolution binary particle swarm optimization with multiple inertia weight strategy for feature selection. Informatics 6(2), 21. MDPI (2019) Too, J., Abdullah, A.R., Mohd Saad, N.: A new co-evolution binary particle swarm optimization with multiple inertia weight strategy for feature selection. Informatics 6(2), 21. MDPI (2019)
4.
go back to reference Barbedo, J.G.A.: A review on the main challenges in automatic plant disease identification based on visible range images. Biosys. Eng. 144, 52–60 (2016)CrossRef Barbedo, J.G.A.: A review on the main challenges in automatic plant disease identification based on visible range images. Biosys. Eng. 144, 52–60 (2016)CrossRef
5.
go back to reference Ferentinos, K.P.: Deep learning models for plant disease detection and diagnosis. Comput. Electron. Agric. 145, 311–318 (2018)CrossRef Ferentinos, K.P.: Deep learning models for plant disease detection and diagnosis. Comput. Electron. Agric. 145, 311–318 (2018)CrossRef
6.
go back to reference Chen, J., Chen, J., Zhang, D., Sun, Y., Nanehkaran, Y.A.: Using deep transfer learning for image-based plant disease identification. Comput. Electron. Agric. 173, 105393 (2020)CrossRef Chen, J., Chen, J., Zhang, D., Sun, Y., Nanehkaran, Y.A.: Using deep transfer learning for image-based plant disease identification. Comput. Electron. Agric. 173, 105393 (2020)CrossRef
7.
go back to reference Madiwalar, S.C., Wyawahare, M.V.: Plant disease identification: a comparative study. In: 2017 International Conference on Data Management, Analytics and Innovation (ICDMAI), pp. 13–18. IEEE (2017) Madiwalar, S.C., Wyawahare, M.V.: Plant disease identification: a comparative study. In: 2017 International Conference on Data Management, Analytics and Innovation (ICDMAI), pp. 13–18. IEEE (2017)
8.
go back to reference Martinelli, F., et al.: Advanced methods of plant disease detection. A review. Agron. Sustain. Dev. 35(1), 1–25 (2015)MathSciNetCrossRef Martinelli, F., et al.: Advanced methods of plant disease detection. A review. Agron. Sustain. Dev. 35(1), 1–25 (2015)MathSciNetCrossRef
9.
go back to reference Wallelign, S., Polceanu, M., Buche, C.: Soybean plant disease identification using convolutional neural network. In: FLAIRS Conference, pp. 146–151 (2018) Wallelign, S., Polceanu, M., Buche, C.: Soybean plant disease identification using convolutional neural network. In: FLAIRS Conference, pp. 146–151 (2018)
10.
go back to reference Shirahatti, J., Patil, R., Akulwar, P.: A survey paper on plant disease identification using machine learning approach. In: International Conference on Communication and Electronics Systems (ICCES), pp. 1171–1174. IEEE (2018) Shirahatti, J., Patil, R., Akulwar, P.: A survey paper on plant disease identification using machine learning approach. In: International Conference on Communication and Electronics Systems (ICCES), pp. 1171–1174. IEEE (2018)
11.
go back to reference Nagasubramanian, K., Jones, S., Singh, A.K., Sarkar, S., Singh, A., Ganapathysubramanian, B.: Plant disease identification using explainable 3D deep learning on hyperspectral images. Plant Methods 15(1), 1–10 (2019)CrossRef Nagasubramanian, K., Jones, S., Singh, A.K., Sarkar, S., Singh, A., Ganapathysubramanian, B.: Plant disease identification using explainable 3D deep learning on hyperspectral images. Plant Methods 15(1), 1–10 (2019)CrossRef
12.
go back to reference UR Rahman, H., et al.: A comparative analysis of machine learning approaches for plant disease identification. Adv. Life Sci. 4(4), 120–126 (2017) UR Rahman, H., et al.: A comparative analysis of machine learning approaches for plant disease identification. Adv. Life Sci. 4(4), 120–126 (2017)
13.
go back to reference Kothari, J.D.: Plant disease identification using artificial intelligence: machine learning approach. Int. J. Innov. Res. Comput. Commun. Eng. 7(11), 11082–11085 (2018) Kothari, J.D.: Plant disease identification using artificial intelligence: machine learning approach. Int. J. Innov. Res. Comput. Commun. Eng. 7(11), 11082–11085 (2018)
14.
go back to reference Vamsidhar, E., Rani, P.J., Babu, K.R.: Plant disease identification and classification using image processing. Int. J. Eng. Adv. Technol. 8(3), 442–446 (2019) Vamsidhar, E., Rani, P.J., Babu, K.R.: Plant disease identification and classification using image processing. Int. J. Eng. Adv. Technol. 8(3), 442–446 (2019)
15.
go back to reference Pertot, I., Kuflik, T., Gordon, I., Freeman, S., Elad, Y.: Identificator: a web-based tool for visual plant disease identification, a proof of concept with a case study on strawberry. Comput. Electron. Agric. 84, 144–154 (2012)CrossRef Pertot, I., Kuflik, T., Gordon, I., Freeman, S., Elad, Y.: Identificator: a web-based tool for visual plant disease identification, a proof of concept with a case study on strawberry. Comput. Electron. Agric. 84, 144–154 (2012)CrossRef
16.
go back to reference Guo, Y., et al.: Plant disease identification based on deep learning algorithm in smart farming. Discrete Dyn. Nat. Soc. (2020) Guo, Y., et al.: Plant disease identification based on deep learning algorithm in smart farming. Discrete Dyn. Nat. Soc. (2020)
17.
go back to reference Kiani, E., Mamedov, T.: Identification of plant disease infection using soft-computing: application to modern botany. Procedia Comput. Sci. 120, 893–900 (2017) Kiani, E., Mamedov, T.: Identification of plant disease infection using soft-computing: application to modern botany. Procedia Comput. Sci. 120, 893–900 (2017)
Metadata
Title
Diagnosis of Plant Diseases by Image Processing Model for Sustainable Solutions
Authors
Sasmita Pani
Jyotiranjan Rout
Zeenat Afroz
Madhusmita Dey
Mahesh Kumar Sahoo
Amar Kumar Das
Copyright Year
2023
DOI
https://doi.org/10.1007/978-3-031-35081-8_15

Premium Partner