Skip to main content
Top

21-08-2024 | Research

Diagnostic Potential of Eye Movements in Alzheimer’s Disease via a Multiclass Machine Learning Model

Authors: Jiaqi Song, Haodong Huang, Jiarui Liu, Jiani Wu, Yingxi Chen, Lisong Wang, Fuxin Zhong, Xiaoqin Wang, Zihan Lin, Mengyu Yan, Wenbo Zhang, Xintong Liu, Xinyi Tang, Yang Lü, Weihua Yu

Published in: Cognitive Computation

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Early diagnosis plays a crucial role in controlling Alzheimer’s disease (AD) progression and delaying cognitive decline. Traditional diagnostic tools present great challenges to clinical practice due to their invasiveness, high cost, and time-consuming administration. This study was designed to construct a non-invasive and cost-effective classification model based on eye movement parameters to distinguish dementia due to AD (ADD), mild cognitive impairment (MCI), and normal cognition. Eye movement data were collected from 258 subjects, comprising 111 patients with ADD, 81 patients with MCI, and 66 individuals with normal cognition. The fixation, smooth pursuit, prosaccade, and anti-saccade tasks were performed. Machine learning methods were used to screen eye movement parameters and build diagnostic models. Pearson’s correlation analysis was used to assess the correlations between the five most important eye movement indicators in the optimal model and neuropsychological scales. The gradient boosting classifier model demonstrated the best classification performance, achieving 68.2% of accuracy and 66.32% of F1-score in multiclass classification of AD. Moreover, the correlation analysis indicated that the eye movement parameters were associated with various cognitive functions, including general cognitive status, attention, visuospatial ability, episodic memory, short-term memory, and language and instrumental activities of daily life. Eye movement parameters in conjunction with machine learning methods achieve satisfactory overall accuracy, making it an effective and less time-consuming method to assist clinical diagnosis of AD.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Estimation of the global prevalence of dementia in 2019 and forecasted prevalence in 2050: an analysis for the Global Burden of Disease Study 2019. Lancet Public Health. 2022 Jan 6;7(2):e105–25. Estimation of the global prevalence of dementia in 2019 and forecasted prevalence in 2050: an analysis for the Global Burden of Disease Study 2019. Lancet Public Health. 2022 Jan 6;7(2):e105–25.
2.
3.
go back to reference Fratiglioni L, Launer LJ, Andersen K, Breteler MM, Copeland JR, Dartigues JF, et al. Incidence of dementia and major subtypes in Europe: a collaborative study of population-based cohorts. Neurologic Diseases in the Elderly Research Group. Neurology. 2000;54(11 Suppl 5):S10–15. Fratiglioni L, Launer LJ, Andersen K, Breteler MM, Copeland JR, Dartigues JF, et al. Incidence of dementia and major subtypes in Europe: a collaborative study of population-based cohorts. Neurologic Diseases in the Elderly Research Group. Neurology. 2000;54(11 Suppl 5):S10–15.
5.
go back to reference Mufson EJ, Counts SE, Perez SE, Ginsberg SD. Cholinergic system during the progression of Alzheimer’s disease: therapeutic implications. Expert Rev Neurother. 2008;8(11):1703–18.CrossRef Mufson EJ, Counts SE, Perez SE, Ginsberg SD. Cholinergic system during the progression of Alzheimer’s disease: therapeutic implications. Expert Rev Neurother. 2008;8(11):1703–18.CrossRef
6.
go back to reference Wong W. Economic burden of Alzheimer disease and managed care considerations. Am J Manag Care. 2020;26(8 Suppl):S177–83. Wong W. Economic burden of Alzheimer disease and managed care considerations. Am J Manag Care. 2020;26(8 Suppl):S177–83.
7.
go back to reference Vickrey BG, Mittman BS, Connor KI, Pearson ML, Della Penna RD, Ganiats TG, et al. The effect of a disease management intervention on quality and outcomes of dementia care. Ann Intern Med. 2006;145(10):713–26.CrossRef Vickrey BG, Mittman BS, Connor KI, Pearson ML, Della Penna RD, Ganiats TG, et al. The effect of a disease management intervention on quality and outcomes of dementia care. Ann Intern Med. 2006;145(10):713–26.CrossRef
8.
go back to reference Ossenkoppele R, van der Kant R, Hansson O. Tau biomarkers in Alzheimer’s disease: towards implementation in clinical practice and trials. Lancet Neurol. 2022;21(8):726–34.CrossRef Ossenkoppele R, van der Kant R, Hansson O. Tau biomarkers in Alzheimer’s disease: towards implementation in clinical practice and trials. Lancet Neurol. 2022;21(8):726–34.CrossRef
9.
go back to reference Chapleau M, Iaccarino L, Soleimani-Meigooni D, Rabinovici GD. The role of amyloid PET in imaging neurodegenerative disorders: a review. J Nucl Med Off Publ Soc Nucl Med. 2022;63(Suppl 1):13S-19S. Chapleau M, Iaccarino L, Soleimani-Meigooni D, Rabinovici GD. The role of amyloid PET in imaging neurodegenerative disorders: a review. J Nucl Med Off Publ Soc Nucl Med. 2022;63(Suppl 1):13S-19S.
10.
go back to reference Rentz DM, Parra Rodriguez MA, Amariglio R, Stern Y, Sperling R, Ferris S. Promising developments in neuropsychological approaches for the detection of preclinical Alzheimer’s disease: a selective review. Alzheimers Res Ther. 2013;5(6):58.CrossRef Rentz DM, Parra Rodriguez MA, Amariglio R, Stern Y, Sperling R, Ferris S. Promising developments in neuropsychological approaches for the detection of preclinical Alzheimer’s disease: a selective review. Alzheimers Res Ther. 2013;5(6):58.CrossRef
11.
go back to reference Duke Han S, Nguyen CP, Stricker NH, Nation DA. Detectable neuropsychological differences in early preclinical Alzheimer’s disease: a meta-analysis. Neuropsychol Rev. 2017;27(4):305–25.CrossRef Duke Han S, Nguyen CP, Stricker NH, Nation DA. Detectable neuropsychological differences in early preclinical Alzheimer’s disease: a meta-analysis. Neuropsychol Rev. 2017;27(4):305–25.CrossRef
12.
go back to reference Jansen CE. Cognitive changes associated with cancer and cancer therapy: patient assessment and education. Semin Oncol Nurs. 2013;29(4):270–9.CrossRef Jansen CE. Cognitive changes associated with cancer and cancer therapy: patient assessment and education. Semin Oncol Nurs. 2013;29(4):270–9.CrossRef
13.
go back to reference Flaks MK, Yassuda MS, Regina ACB, Cid CG, Camargo CHP, Gattaz WF, et al. The short cognitive performance test (SKT): a preliminary study of its psychometric properties in Brazil. Int Psychogeriatr. 2006;18(1):121–33.CrossRef Flaks MK, Yassuda MS, Regina ACB, Cid CG, Camargo CHP, Gattaz WF, et al. The short cognitive performance test (SKT): a preliminary study of its psychometric properties in Brazil. Int Psychogeriatr. 2006;18(1):121–33.CrossRef
14.
go back to reference Crawford TJ, Higham S, Renvoize T, Patel J, Dale M, Suriya A, et al. Inhibitory control of saccadic eye movements and cognitive impairment in Alzheimer’s disease. Biol Psychiatry. 2005;57(9):1052–60.CrossRef Crawford TJ, Higham S, Renvoize T, Patel J, Dale M, Suriya A, et al. Inhibitory control of saccadic eye movements and cognitive impairment in Alzheimer’s disease. Biol Psychiatry. 2005;57(9):1052–60.CrossRef
15.
go back to reference Kaufman LD, Pratt J, Levine B, Black SE. Executive deficits detected in mild Alzheimer’s disease using the antisaccade task. Brain Behav. 2012;2(1):15–21.CrossRef Kaufman LD, Pratt J, Levine B, Black SE. Executive deficits detected in mild Alzheimer’s disease using the antisaccade task. Brain Behav. 2012;2(1):15–21.CrossRef
16.
go back to reference Opwonya J, Doan DNT, Kim SG, Kim JI, Ku B, Kim S, et al. Saccadic eye movement in mild cognitive impairment and Alzheimer’s disease: a systematic review and meta-analysis. Neuropsychol Rev. 2022;32(2):193–227.CrossRef Opwonya J, Doan DNT, Kim SG, Kim JI, Ku B, Kim S, et al. Saccadic eye movement in mild cognitive impairment and Alzheimer’s disease: a systematic review and meta-analysis. Neuropsychol Rev. 2022;32(2):193–227.CrossRef
17.
go back to reference Noiret N, Carvalho N, Laurent É, Chopard G, Binetruy M, Nicolier M, et al. Saccadic eye movements and attentional control in Alzheimer’s disease. Arch Clin Neuropsychol. 2018;33(1):1–13.CrossRef Noiret N, Carvalho N, Laurent É, Chopard G, Binetruy M, Nicolier M, et al. Saccadic eye movements and attentional control in Alzheimer’s disease. Arch Clin Neuropsychol. 2018;33(1):1–13.CrossRef
18.
go back to reference Peltsch A, Hemraj A, Garcia A, Munoz DP. Saccade deficits in amnestic mild cognitive impairment resemble mild Alzheimer’s disease. Eur J Neurosci. 2014;39(11):2000–13.CrossRef Peltsch A, Hemraj A, Garcia A, Munoz DP. Saccade deficits in amnestic mild cognitive impairment resemble mild Alzheimer’s disease. Eur J Neurosci. 2014;39(11):2000–13.CrossRef
19.
go back to reference Opwonya J, Ku B, Lee KH, Kim JI, Kim JU. Eye movement changes as an indicator of mild cognitive impairment. Front Neurosci. 2023;15(17):1171417.CrossRef Opwonya J, Ku B, Lee KH, Kim JI, Kim JU. Eye movement changes as an indicator of mild cognitive impairment. Front Neurosci. 2023;15(17):1171417.CrossRef
20.
go back to reference Jiang J, Yan Z, Sheng C, Wang M, Guan Q, Yu Z, et al. A novel detection tool for mild cognitive impairment patients based on eye movement and electroencephalogram. J Alzheimers Dis. 2019;72(2):389–99.CrossRef Jiang J, Yan Z, Sheng C, Wang M, Guan Q, Yu Z, et al. A novel detection tool for mild cognitive impairment patients based on eye movement and electroencephalogram. J Alzheimers Dis. 2019;72(2):389–99.CrossRef
21.
go back to reference Nie J, Qiu Q, Phillips M, Sun L, Yan F, Lin X, et al. Early diagnosis of mild cognitive impairment based on eye movement parameters in an aging Chinese population. Front Aging Neurosci. 2020;12: 221.CrossRef Nie J, Qiu Q, Phillips M, Sun L, Yan F, Lin X, et al. Early diagnosis of mild cognitive impairment based on eye movement parameters in an aging Chinese population. Front Aging Neurosci. 2020;12: 221.CrossRef
22.
go back to reference Yang Q, Wang T, Su N, Xiao S, Kapoula Z. Specific saccade deficits in patients with Alzheimer’s disease at mild to moderate stage and in patients with amnestic mild cognitive impairment. Age. 2013;35(4):1287–98.CrossRef Yang Q, Wang T, Su N, Xiao S, Kapoula Z. Specific saccade deficits in patients with Alzheimer’s disease at mild to moderate stage and in patients with amnestic mild cognitive impairment. Age. 2013;35(4):1287–98.CrossRef
23.
go back to reference Beltrán J, García-Vázquez MS, Benois-Pineau J, Gutierrez-Robledo LM, Dartigues JF. Computational techniques for eye movements analysis towards supporting early diagnosis of Alzheimer’s disease: a review. Comput Math Methods Med. 2018;2018:2676409.CrossRef Beltrán J, García-Vázquez MS, Benois-Pineau J, Gutierrez-Robledo LM, Dartigues JF. Computational techniques for eye movements analysis towards supporting early diagnosis of Alzheimer’s disease: a review. Comput Math Methods Med. 2018;2018:2676409.CrossRef
25.
go back to reference Liu S, Liu S, Cai W, Che H, Pujol S, Kikinis R, et al. Multi-modal neuroimaging feature learning for multi-class diagnosis of Alzheimer’s disease. IEEE Trans Biomed Eng. 2015;62(4):1132–40.CrossRef Liu S, Liu S, Cai W, Che H, Pujol S, Kikinis R, et al. Multi-modal neuroimaging feature learning for multi-class diagnosis of Alzheimer’s disease. IEEE Trans Biomed Eng. 2015;62(4):1132–40.CrossRef
27.
go back to reference Bron EE, Smits M, van der Flier WM, Vrenken H, Barkhof F, Scheltens P, et al. Standardized evaluation of algorithms for computer-aided diagnosis of dementia based on structural MRI: the CADDementia challenge. Neuroimage. 2015;1(111):562–79.CrossRef Bron EE, Smits M, van der Flier WM, Vrenken H, Barkhof F, Scheltens P, et al. Standardized evaluation of algorithms for computer-aided diagnosis of dementia based on structural MRI: the CADDementia challenge. Neuroimage. 2015;1(111):562–79.CrossRef
28.
go back to reference Tong T, Gray K, Gao Q, Chen L, Rueckert D. Multi-modal classification of Alzheimer’s disease using nonlinear graph fusion. Pattern Recognit. 2017;1(63):171–81.CrossRef Tong T, Gray K, Gao Q, Chen L, Rueckert D. Multi-modal classification of Alzheimer’s disease using nonlinear graph fusion. Pattern Recognit. 2017;1(63):171–81.CrossRef
29.
go back to reference Lin W, Gao Q, Du M, Chen W, Tong T. Multiclass diagnosis of stages of Alzheimer’s disease using linear discriminant analysis scoring for multimodal data. Comput Biol Med. 2021;134:104478.CrossRef Lin W, Gao Q, Du M, Chen W, Tong T. Multiclass diagnosis of stages of Alzheimer’s disease using linear discriminant analysis scoring for multimodal data. Comput Biol Med. 2021;134:104478.CrossRef
30.
go back to reference Cicalese PA, Li R, Ahmadi MB, Wang C, Francis JT, Selvaraj S, et al. An EEG-fNIRS hybridization technique in the four-class classification of Alzheimer’s disease. J Neurosci Methods. 2020;15(336):108618.CrossRef Cicalese PA, Li R, Ahmadi MB, Wang C, Francis JT, Selvaraj S, et al. An EEG-fNIRS hybridization technique in the four-class classification of Alzheimer’s disease. J Neurosci Methods. 2020;15(336):108618.CrossRef
31.
go back to reference McKhann GM, Knopman DS, Chertkow H, Hyman BT, Jack CR, Kawas CH, et al. The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement J Alzheimers Assoc. 2011;7(3):263–9.CrossRef McKhann GM, Knopman DS, Chertkow H, Hyman BT, Jack CR, Kawas CH, et al. The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement J Alzheimers Assoc. 2011;7(3):263–9.CrossRef
32.
go back to reference Folstein MF, Folstein SE, McHugh PR. ‘Mini-mental state’. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975;12(3):189–98.CrossRef Folstein MF, Folstein SE, McHugh PR. ‘Mini-mental state’. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975;12(3):189–98.CrossRef
33.
go back to reference Rosen WG, Mohs RC, Davis KL. A new rating scale for Alzheimer’s disease. Am J Psychiatry. 1984;141(11):1356–64.CrossRef Rosen WG, Mohs RC, Davis KL. A new rating scale for Alzheimer’s disease. Am J Psychiatry. 1984;141(11):1356–64.CrossRef
34.
go back to reference Kemtes KA, Allen DN. Presentation modality influences WAIS digit span performance in younger and older adults. J Clin Exp Neuropsychol. 2008;30(6):661–5.CrossRef Kemtes KA, Allen DN. Presentation modality influences WAIS digit span performance in younger and older adults. J Clin Exp Neuropsychol. 2008;30(6):661–5.CrossRef
35.
go back to reference O’Rourke JJF, Beglinger LJ, Smith MM, Mills J, Moser DJ, Rowe KC, et al. The trail making test in prodromal Huntington disease: contributions of disease progression to test performance. J Clin Exp Neuropsychol. 2011;33(5):567–79.CrossRef O’Rourke JJF, Beglinger LJ, Smith MM, Mills J, Moser DJ, Rowe KC, et al. The trail making test in prodromal Huntington disease: contributions of disease progression to test performance. J Clin Exp Neuropsychol. 2011;33(5):567–79.CrossRef
36.
go back to reference Williams BW, Mack W, Henderson VW. Boston naming test in Alzheimer’s disease. Neuropsychologia. 1989;27(8):1073–9.CrossRef Williams BW, Mack W, Henderson VW. Boston naming test in Alzheimer’s disease. Neuropsychologia. 1989;27(8):1073–9.CrossRef
37.
go back to reference Sunderland T, Hill JL, Mellow AM, Lawlor BA, Gundersheimer J, Newhouse PA, et al. Clock drawing in Alzheimer’s disease. A novel measure of dementia severity. J Am Geriatr Soc. 1989;37(8):725–9.CrossRef Sunderland T, Hill JL, Mellow AM, Lawlor BA, Gundersheimer J, Newhouse PA, et al. Clock drawing in Alzheimer’s disease. A novel measure of dementia severity. J Am Geriatr Soc. 1989;37(8):725–9.CrossRef
38.
go back to reference Query WT, Berger RA. AVLT memory scores as a function of age among general medical, neurologic and alcoholic patients. J Clin Psychol. 1980;36(4):1009–12.CrossRef Query WT, Berger RA. AVLT memory scores as a function of age among general medical, neurologic and alcoholic patients. J Clin Psychol. 1980;36(4):1009–12.CrossRef
39.
go back to reference Peña-Casanova J, Gramunt-Fombuena N, Quiñones-Ubeda S, Sánchez-Benavides G, Aguilar M, Badenes D, et al. Spanish Multicenter Normative Studies (NEURONORMA Project): norms for the Rey-Osterrieth complex figure (copy and memory), and free and cued selective reminding test. Arch Clin Neuropsychol Off J Natl Acad Neuropsychol. 2009;24(4):371–93.CrossRef Peña-Casanova J, Gramunt-Fombuena N, Quiñones-Ubeda S, Sánchez-Benavides G, Aguilar M, Badenes D, et al. Spanish Multicenter Normative Studies (NEURONORMA Project): norms for the Rey-Osterrieth complex figure (copy and memory), and free and cued selective reminding test. Arch Clin Neuropsychol Off J Natl Acad Neuropsychol. 2009;24(4):371–93.CrossRef
40.
go back to reference Lawton MP, Brody EM. Assessment of older people: self-maintaining and instrumental activities of daily living. Gerontologist. 1969;9(3):179–86.CrossRef Lawton MP, Brody EM. Assessment of older people: self-maintaining and instrumental activities of daily living. Gerontologist. 1969;9(3):179–86.CrossRef
41.
42.
go back to reference Ke G, Meng Q, Finley T, Wang T, Chen W, Ma W, et al. LightGBM: a highly efficient gradient boosting decision tree. In: Proceedings of the 31st international conference on neural information processing systems. Red Hook: Curran Associates Inc.; 2017. pp. 3149–57. (NIPS’17). Ke G, Meng Q, Finley T, Wang T, Chen W, Ma W, et al. LightGBM: a highly efficient gradient boosting decision tree. In: Proceedings of the 31st international conference on neural information processing systems. Red Hook: Curran Associates Inc.; 2017. pp. 3149–57. (NIPS’17).
44.
go back to reference Geurts P, Ernst D, Wehenkel L. Extremely randomized trees. Mach Learn. 2006;63(1):3–42.CrossRef Geurts P, Ernst D, Wehenkel L. Extremely randomized trees. Mach Learn. 2006;63(1):3–42.CrossRef
46.
go back to reference McCullagh P. Generalized linear models. 2nd ed. New York: Routledge; 2019. p. 532.CrossRef McCullagh P. Generalized linear models. 2nd ed. New York: Routledge; 2019. p. 532.CrossRef
47.
go back to reference Hoerl AE, Kennard RW. Ridge regression: biased estimation for nonorthogonal problems. Technometrics. 1970;12(1):55–67.CrossRef Hoerl AE, Kennard RW. Ridge regression: biased estimation for nonorthogonal problems. Technometrics. 1970;12(1):55–67.CrossRef
48.
go back to reference Hastie T, Tibshirani R, Friedman JH, Friedman JH. The elements of statistical learning: data mining, inference, and prediction. Linear methods for classification. New York; Springer; 2009. pp. 101–37. Hastie T, Tibshirani R, Friedman JH, Friedman JH. The elements of statistical learning: data mining, inference, and prediction. Linear methods for classification. New York; Springer; 2009. pp. 101–37.
49.
52.
go back to reference Chang CC, Lin CJ. LIBSVM: a library for support vector machines. ACM Trans Intell Syst Technol TIST. 2011;2(3):1–27.CrossRef Chang CC, Lin CJ. LIBSVM: a library for support vector machines. ACM Trans Intell Syst Technol TIST. 2011;2(3):1–27.CrossRef
53.
go back to reference Hall P, Park BU, Samworth RJ. Choice of neighbor order in nearest-neighbor classification. Ann Stat. 2008;36(5):2135–2152. Hall P, Park BU, Samworth RJ. Choice of neighbor order in nearest-neighbor classification. Ann Stat. 2008;36(5):2135–2152.
54.
go back to reference Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: machine learning in Python. Mach Learn. 2011;12:2825. PYTHON. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: machine learning in Python. Mach Learn. 2011;12:2825. PYTHON.
58.
go back to reference Monsell SE, Kukull WA, Roher AE, Maarouf CL, Serrano G, Beach TG, et al. APOE4 carriers and non-carriers with the clinical diagnosis of Alzheimer’s dementia and minimal amyloid plaques. JAMA Neurol. 2015;72(10):1124–31.CrossRef Monsell SE, Kukull WA, Roher AE, Maarouf CL, Serrano G, Beach TG, et al. APOE4 carriers and non-carriers with the clinical diagnosis of Alzheimer’s dementia and minimal amyloid plaques. JAMA Neurol. 2015;72(10):1124–31.CrossRef
59.
go back to reference Quaresima V, Bisconti S, Ferrari M. A brief review on the use of functional near-infrared spectroscopy (fNIRS) for language imaging studies in human newborns and adults. Brain Lang. 2012;121(2):79–89.CrossRef Quaresima V, Bisconti S, Ferrari M. A brief review on the use of functional near-infrared spectroscopy (fNIRS) for language imaging studies in human newborns and adults. Brain Lang. 2012;121(2):79–89.CrossRef
60.
go back to reference Tzekov R, Mullan M. Vision function abnormalities in Alzheimer disease. Surv Ophthalmol. 2014;59(4):414–33.CrossRef Tzekov R, Mullan M. Vision function abnormalities in Alzheimer disease. Surv Ophthalmol. 2014;59(4):414–33.CrossRef
61.
go back to reference Rüb U, Del Tredici K, Schultz C, Büttner-Ennever JA, Braak H. The premotor region essential for rapid vertical eye movements shows early involvement in Alzheimer’s disease-related cytoskeletal pathology. Vision Res. 2001;41(16):2149–56.CrossRef Rüb U, Del Tredici K, Schultz C, Büttner-Ennever JA, Braak H. The premotor region essential for rapid vertical eye movements shows early involvement in Alzheimer’s disease-related cytoskeletal pathology. Vision Res. 2001;41(16):2149–56.CrossRef
62.
go back to reference Boxer AL, Garbutt S, Seeley WW, Jafari A, Heuer HW, Mirsky J, et al. Saccade abnormalities in autopsy-confirmed frontotemporal lobar degeneration and Alzheimer disease. Arch Neurol. 2012;69(4):509–17.CrossRef Boxer AL, Garbutt S, Seeley WW, Jafari A, Heuer HW, Mirsky J, et al. Saccade abnormalities in autopsy-confirmed frontotemporal lobar degeneration and Alzheimer disease. Arch Neurol. 2012;69(4):509–17.CrossRef
63.
go back to reference Readman MR, Polden M, Gibbs MC, Wareing L, Crawford TJ. The potential of naturalistic eye movement tasks in the diagnosis of Alzheimer’s disease: a review. Brain Sci. 2021;11(11):1503.CrossRef Readman MR, Polden M, Gibbs MC, Wareing L, Crawford TJ. The potential of naturalistic eye movement tasks in the diagnosis of Alzheimer’s disease: a review. Brain Sci. 2021;11(11):1503.CrossRef
64.
go back to reference Zhang N, Liu C, Chen Z, An L, Ren D, Yuan F, et al. Prediction of adolescent subjective well-being: a machine learning approach. Gen Psychiatry. 2019;32(5):e100096.CrossRef Zhang N, Liu C, Chen Z, An L, Ren D, Yuan F, et al. Prediction of adolescent subjective well-being: a machine learning approach. Gen Psychiatry. 2019;32(5):e100096.CrossRef
65.
go back to reference Chehrehnegar N, Nejati V, Shati M, Esmaeili M, Rezvani Z, Haghi M, et al. Behavioral and cognitive markers of mild cognitive impairment: diagnostic value of saccadic eye movements and Simon task. Aging Clin Exp Res. 2019;31(11):1591–600.CrossRef Chehrehnegar N, Nejati V, Shati M, Esmaeili M, Rezvani Z, Haghi M, et al. Behavioral and cognitive markers of mild cognitive impairment: diagnostic value of saccadic eye movements and Simon task. Aging Clin Exp Res. 2019;31(11):1591–600.CrossRef
66.
go back to reference Perry RJ, Hodges JR. Attention and executive deficits in Alzheimer’s disease. A critical review. Brain J Neurol. 1999;122(Pt 3):383–404.CrossRef Perry RJ, Hodges JR. Attention and executive deficits in Alzheimer’s disease. A critical review. Brain J Neurol. 1999;122(Pt 3):383–404.CrossRef
67.
go back to reference Ramzaoui H, Faure S, Spotorno S. Alzheimer’s Disease, visual search, and instrumental activities of daily living: a review and a new perspective on attention and eye movements. J Alzheimers Dis. 2018;66(3):901–25.CrossRef Ramzaoui H, Faure S, Spotorno S. Alzheimer’s Disease, visual search, and instrumental activities of daily living: a review and a new perspective on attention and eye movements. J Alzheimers Dis. 2018;66(3):901–25.CrossRef
68.
go back to reference Pereira MLF, von Camargo MZA, Aprahamian I, Forlenza OV. Eye movement analysis and cognitive processing: detecting indicators of conversion to Alzheimer’s disease. Neuropsychiatr Dis Treat. 2014;10:1273–85.CrossRef Pereira MLF, von Camargo MZA, Aprahamian I, Forlenza OV. Eye movement analysis and cognitive processing: detecting indicators of conversion to Alzheimer’s disease. Neuropsychiatr Dis Treat. 2014;10:1273–85.CrossRef
69.
go back to reference Gold CA, Budson AE. Memory loss in Alzheimer’s disease: implications for development of therapeutics. Expert Rev Neurother. 2008;8(12):1879–91.CrossRef Gold CA, Budson AE. Memory loss in Alzheimer’s disease: implications for development of therapeutics. Expert Rev Neurother. 2008;8(12):1879–91.CrossRef
70.
go back to reference Mura T, Coley N, Amieva H, Berr C, Gabelle A, Ousset PJ, et al. Cognitive decline as an outcome and marker of progression toward dementia, in early preventive trials. Alzheimers Dement J Alzheimers Assoc. 2022;18(4):676–87.CrossRef Mura T, Coley N, Amieva H, Berr C, Gabelle A, Ousset PJ, et al. Cognitive decline as an outcome and marker of progression toward dementia, in early preventive trials. Alzheimers Dement J Alzheimers Assoc. 2022;18(4):676–87.CrossRef
71.
go back to reference Schmitt KU, Seeger R, Fischer H, Lanz C, Muser M, Walz F, et al. Saccadic eye movement performance as an indicator of driving ability in elderly drivers. Swiss Med Wkly. 2015;145(0708):w14098–w14098. Schmitt KU, Seeger R, Fischer H, Lanz C, Muser M, Walz F, et al. Saccadic eye movement performance as an indicator of driving ability in elderly drivers. Swiss Med Wkly. 2015;145(0708):w14098–w14098.
72.
go back to reference Premeti A, Bucci MP, Isel F. Evidence from ERP and eye movements as markers of language dysfunction in dyslexia. Brain Sci. 2022;12(1):73.CrossRef Premeti A, Bucci MP, Isel F. Evidence from ERP and eye movements as markers of language dysfunction in dyslexia. Brain Sci. 2022;12(1):73.CrossRef
73.
go back to reference Lin CY, Chen TB, Lin KN, Yeh YC, Chen WT, Wang KS, et al. Confrontation naming errors in Alzheimer’s disease. Dement Geriatr Cogn Disord. 2013;37(1–2):86–94. Lin CY, Chen TB, Lin KN, Yeh YC, Chen WT, Wang KS, et al. Confrontation naming errors in Alzheimer’s disease. Dement Geriatr Cogn Disord. 2013;37(1–2):86–94.
74.
go back to reference Brousseau B, Rose J, Eizenman M. Hybrid eye-tracking on a smartphone with CNN feature extraction and an infrared 3D model. Sensors. 2020;20(2):543.CrossRef Brousseau B, Rose J, Eizenman M. Hybrid eye-tracking on a smartphone with CNN feature extraction and an infrared 3D model. Sensors. 2020;20(2):543.CrossRef
Metadata
Title
Diagnostic Potential of Eye Movements in Alzheimer’s Disease via a Multiclass Machine Learning Model
Authors
Jiaqi Song
Haodong Huang
Jiarui Liu
Jiani Wu
Yingxi Chen
Lisong Wang
Fuxin Zhong
Xiaoqin Wang
Zihan Lin
Mengyu Yan
Wenbo Zhang
Xintong Liu
Xinyi Tang
Yang Lü
Weihua Yu
Publication date
21-08-2024
Publisher
Springer US
Published in
Cognitive Computation
Print ISSN: 1866-9956
Electronic ISSN: 1866-9964
DOI
https://doi.org/10.1007/s12559-024-10346-5

Premium Partner