Skip to main content
Top
Published in: Mechanics of Composite Materials 3/2022

18-07-2022

Diagnostics of Micropores in a Polymer Material with a Built-In Fiber-Optic Bragg Grating

Author: A. A. Pan’kov

Published in: Mechanics of Composite Materials | Issue 3/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A mathematical model for the diagnostics of technological defects (micropores) in a polymer material using built-in fiber-optic sensor with a long low-reflective Bragg grating is presented. The diagnostics is based on measuring the informative reflection spectrum of the Bragg grating at the output of the optical fiber. An algorithm for processing the strain spectrum was developed for the cases where the sensitive part of the optical fiber is located in the polymeric material in the deformation “disturbance zone” of the defect in the form of a spherical cavity. The diagnosable parameters were the defect size and location relative to the known length and location of the sensitive part. Results of a mathematical simulation of light and strain spectra along the sensitive part of the optical fiber, at various diagnosed distances from the optical fiber to the center of the spherical cavity in the polymer material are presented. A direct numerical solution (deconvolution) of the Fredholm integral equation is not considered here, and the reflection spectra, are obtained as convolutions with corresponding known strain spectra for the sensitive part of the fiber. The strain spectra were found using the solution of an elasticity theory problem for a “defective medium/fiber” domain.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference E. D. Kartashova and A. Yu. Muizemnek, “Technological defects in polymer layered composite materials,” Izv. Vysh. Uch. Zav. Volga region, Tekhn. Nauki, No. 2, 79-89 (2017). E. D. Kartashova and A. Yu. Muizemnek, “Technological defects in polymer layered composite materials,” Izv. Vysh. Uch. Zav. Volga region, Tekhn. Nauki, No. 2, 79-89 (2017).
2.
go back to reference V. V. Murashov and A. F. Rumyantsev, “Defects of monolithic parts and multilayer structures from polymer composite materials and methods for their detection. Part 1. Defects in monolithic parts and multilayer structures made of polymer composite materials,” Kontrol, Diagnostika, No. 4, 23-32 (2007). V. V. Murashov and A. F. Rumyantsev, “Defects of monolithic parts and multilayer structures from polymer composite materials and methods for their detection. Part 1. Defects in monolithic parts and multilayer structures made of polymer composite materials,” Kontrol, Diagnostika, No. 4, 23-32 (2007).
3.
go back to reference V. V. Vorobei and V. B. Markin, Quality control of manufacturing and repair technology of composite structures [in Russian], Barnaul: Izd. MTS EOR (2015). V. V. Vorobei and V. B. Markin, Quality control of manufacturing and repair technology of composite structures [in Russian], Barnaul: Izd. MTS EOR (2015).
4.
go back to reference A. N. Bormotov, “Decomposition of systems and hierarchical structures of composite quality indicators,” Sovrem. Naukoemk. Tekhnologii, No. 9-2, 196-203 (2016). A. N. Bormotov, “Decomposition of systems and hierarchical structures of composite quality indicators,” Sovrem. Naukoemk. Tekhnologii, No. 9-2, 196-203 (2016).
5.
go back to reference E. N. Kablov, G. A. Morozov, D. V. Sivakov, and I. N. Gulyaev, “Built-in control: from sensors to information composites,” Aviats. Materialy, M., Izd. VIAM, 331-342 (2007). E. N. Kablov, G. A. Morozov, D. V. Sivakov, and I. N. Gulyaev, “Built-in control: from sensors to information composites,” Aviats. Materialy, M., Izd. VIAM, 331-342 (2007).
6.
go back to reference A. S. Kolobkov and S. S. Malakhovskiy, “Self-healing composite materials (review),” Tr. VIAM, No. 1, 47-54 (2019). A. S. Kolobkov and S. S. Malakhovskiy, “Self-healing composite materials (review),” Tr. VIAM, No. 1, 47-54 (2019).
7.
go back to reference K. V. Sorokin and V. V. Murashov, “Global trends in the development of distributed fiber-optic sensor systems (review),” Aviats. Materialy Tekhnologii, No. 3, 90-94 (2015). K. V. Sorokin and V. V. Murashov, “Global trends in the development of distributed fiber-optic sensor systems (review),” Aviats. Materialy Tekhnologii, No. 3, 90-94 (2015).
8.
go back to reference S. M. Kachura and V. I. Postnov, “Prospective fiber-optic sensors and their application (review), Tr. VIAM, No. 5, 52-61 (2019). S. M. Kachura and V. I. Postnov, “Prospective fiber-optic sensors and their application (review), Tr. VIAM, No. 5, 52-61 (2019).
9.
go back to reference A. A. Vlasov, A. S. Aleinik, F. A. Shuklin, A. N. Nikitenko, E. A. Motorin, and A. Yu. Kireenkov, “Detecting X-ray actions with the use of Bragg fiber grattings,” Tekhn. Vestn. Inform. Tekhnologii, Mekhanika and Optiki, No. 5, 809-817 (2019). A. A. Vlasov, A. S. Aleinik, F. A. Shuklin, A. N. Nikitenko, E. A. Motorin, and A. Yu. Kireenkov, “Detecting X-ray actions with the use of Bragg fiber grattings,” Tekhn. Vestn. Inform. Tekhnologii, Mekhanika and Optiki, No. 5, 809-817 (2019).
10.
go back to reference E. N. Kablov, O. V. Startsev, I. M. Medvedev, and I. S. Shelemba, “Fiber-optic sensors for monitoring corrosion processes in aircraft components (review),” Aviats. Materialy Tekhnologii, No. 3, 26-34 (2017). E. N. Kablov, O. V. Startsev, I. M. Medvedev, and I. S. Shelemba, “Fiber-optic sensors for monitoring corrosion processes in aircraft components (review),” Aviats. Materialy Tekhnologii, No. 3, 26-34 (2017).
11.
go back to reference I. A. Ruzakov, “Monitoring of the strain state of PCM structural elements based on fiber optic sensors (Review), Tr. VIAM, No. 4, 88-98 (2019). I. A. Ruzakov, “Monitoring of the strain state of PCM structural elements based on fiber optic sensors (Review), Tr. VIAM, No. 4, 88-98 (2019).
12.
go back to reference A. N. Ser’yoznov, A. B. Kuznetsov, A. V. Lukyanov, and A. A. Bragin, “Use of fiber-optic technologies in the development of built-in self-diagnosis systems for aircraft structures,” Nauch. vestn. NSTU. Aviats. Rocket.-Kosm. Tekhnika, No. 3, 95-105 (2016). A. N. Ser’yoznov, A. B. Kuznetsov, A. V. Lukyanov, and A. A. Bragin, “Use of fiber-optic technologies in the development of built-in self-diagnosis systems for aircraft structures,” Nauch. vestn. NSTU. Aviats. Rocket.-Kosm. Tekhnika, No. 3, 95-105 (2016).
13.
go back to reference O. N. Budadin, A. A. Kulkov, and V. Yu. Kutyurin, “Fiber-optic sensors with Bragg gratings for monitoring the stressstrain state of products made of composite materials,” Konstr. iz Kompoz. Mater., No. 2, 60-67 (2018). O. N. Budadin, A. A. Kulkov, and V. Yu. Kutyurin, “Fiber-optic sensors with Bragg gratings for monitoring the stressstrain state of products made of composite materials,” Konstr. iz Kompoz. Mater., No. 2, 60-67 (2018).
14.
go back to reference N. A. Kosheleva, G. S. Shipunov, A. A. Voronkov, N. P. Merkusheva, and A. A. Tikhonova, “Experimental studies to determine the strain of samples of a polymer composite material using fiber-optic sensors,” Vestn. PNRPU, Aerokosm. Tekhnika, No. 50, 26-35 (2017). N. A. Kosheleva, G. S. Shipunov, A. A. Voronkov, N. P. Merkusheva, and A. A. Tikhonova, “Experimental studies to determine the strain of samples of a polymer composite material using fiber-optic sensors,” Vestn. PNRPU, Aerokosm. Tekhnika, No. 50, 26-35 (2017).
15.
go back to reference A. N. Anoshkin, V. Yu. Zuiko, K. A. Pelenev, P. V. Pisarev, and G. S. Shipunov, “Numerical simulation of the stressstrain state of an aviation composite frame for developing a control technique using fiber-optic sensors,” Vestn. PNRPU, Mekhanika, No. 4, 47-57 (2018). A. N. Anoshkin, V. Yu. Zuiko, K. A. Pelenev, P. V. Pisarev, and G. S. Shipunov, “Numerical simulation of the stressstrain state of an aviation composite frame for developing a control technique using fiber-optic sensors,” Vestn. PNRPU, Mekhanika, No. 4, 47-57 (2018).
16.
go back to reference R. V. Skidanov, A. A. Morozov, A. P. Porfiriev, and V. A. Blank, “An imaging spectrometer based on a discrete interference filter,” Computer. optics, No. 5, 716-720 2015. R. V. Skidanov, A. A. Morozov, A. P. Porfiriev, and V. A. Blank, “An imaging spectrometer based on a discrete interference filter,” Computer. optics, No. 5, 716-720 2015.
17.
go back to reference R. V. Skidanov, A. A. Morozov, and S. Yu. Gogoleva, “Solution of Fredholm equations of the first kind using the method of extended regularized normal equations in the problem of restoring hyperspectral images,” Mater. Mezhdunar. Konf. Molodezh. Shkoly “Inform. Technologii and Nanotechnologii,” Samara, May 17-19, 2016, Samara, Izd. Samar Gos. Aerokosm. Univ. Im. akad. S. P. Koroleva, 273-278 (2016). R. V. Skidanov, A. A. Morozov, and S. Yu. Gogoleva, “Solution of Fredholm equations of the first kind using the method of extended regularized normal equations in the problem of restoring hyperspectral images,” Mater. Mezhdunar. Konf. Molodezh. Shkoly “Inform. Technologii and Nanotechnologii,” Samara, May 17-19, 2016, Samara, Izd. Samar Gos. Aerokosm. Univ. Im. akad. S. P. Koroleva, 273-278 (2016).
18.
go back to reference A. N. Tikhonov, A. V. Goncharskii, V. V. Stepanov, and A. G. Yagola, Numerical Methods for Solving Ill-Posed Problems [in Russian], M., Nauka (1990). A. N. Tikhonov, A. V. Goncharskii, V. V. Stepanov, and A. G. Yagola, Numerical Methods for Solving Ill-Posed Problems [in Russian], M., Nauka (1990).
19.
go back to reference D. V. Luk’yanenko and A. G. Yagola, “Use of multiprocessor systems for solving inverse problems reducing to Fredholm integral equations of the first kind,” Tr. Inst. Matematika Mekhanika, Ural Branch of the Russian Academy of Sciences, No. 1, 222-234 (2012). D. V. Luk’yanenko and A. G. Yagola, “Use of multiprocessor systems for solving inverse problems reducing to Fredholm integral equations of the first kind,” Tr. Inst. Matematika Mekhanika, Ural Branch of the Russian Academy of Sciences, No. 1, 222-234 (2012).
20.
go back to reference Patent RU No. 2723921. Method for measuring strains / A. A. Pankov, publ.: 18.06.2020 Bull. No. 17. Patent RU No. 2723921. Method for measuring strains / A. A. Pankov, publ.: 18.06.2020 Bull. No. 17.
21.
go back to reference A. A. Pan’kov, “Mathematical model for diagnosing strains by an optical fiber sensor with a distributed Bragg grating according to the solution of Fredholm integral equation,” Mech. Compos. Mater., No. 4, 513-522 (2018). A. A. Pan’kov, “Mathematical model for diagnosing strains by an optical fiber sensor with a distributed Bragg grating according to the solution of Fredholm integral equation,” Mech. Compos. Mater., No. 4, 513-522 (2018).
22.
go back to reference A. A. Pankov, “Mathematical model for diagnosing the microporosity of materials by a fiber-optic sensor with a distributed Bragg grating,” Opt. Zhurn., No. 4, 3-10 (2020). A. A. Pankov, “Mathematical model for diagnosing the microporosity of materials by a fiber-optic sensor with a distributed Bragg grating,” Opt. Zhurn., No. 4, 3-10 (2020).
23.
go back to reference Y. Wang, J. Gong, D. Y. Wang, B. Dong, W. Bi, and A. Wang, “A quasi-distributed sensing network with time-division multiplexed fiber Bragg gratings,” IEEE Photonics Technol. Lett., 23, No. 1, 70-72 (2011).CrossRef Y. Wang, J. Gong, D. Y. Wang, B. Dong, W. Bi, and A. Wang, “A quasi-distributed sensing network with time-division multiplexed fiber Bragg gratings,” IEEE Photonics Technol. Lett., 23, No. 1, 70-72 (2011).CrossRef
25.
go back to reference J. Zhang, “Distributed vibration sensor system using signals reflected by weak fiber Bragg gratings,” Opt. Zhurn., No. 7, 76-83 (2018). J. Zhang, “Distributed vibration sensor system using signals reflected by weak fiber Bragg gratings,” Opt. Zhurn., No. 7, 76-83 (2018).
26.
go back to reference R. Christensen, Introduction to the Mechanics of Composites [Russian translation], M., Mir (1982). R. Christensen, Introduction to the Mechanics of Composites [Russian translation], M., Mir (1982).
27.
go back to reference A. A. Pankov, Statistical Mechanics of Piezocomposites [in Russian], Perm, Izd. Perm. Gos. Tekhn. Univ. (2009). A. A. Pankov, Statistical Mechanics of Piezocomposites [in Russian], Perm, Izd. Perm. Gos. Tekhn. Univ. (2009).
Metadata
Title
Diagnostics of Micropores in a Polymer Material with a Built-In Fiber-Optic Bragg Grating
Author
A. A. Pan’kov
Publication date
18-07-2022
Publisher
Springer US
Published in
Mechanics of Composite Materials / Issue 3/2022
Print ISSN: 0191-5665
Electronic ISSN: 1573-8922
DOI
https://doi.org/10.1007/s11029-022-10039-w

Other articles of this Issue 3/2022

Mechanics of Composite Materials 3/2022 Go to the issue

Premium Partners