Skip to main content
Top
Published in:

20-01-2023

Dialogue Relation Extraction with Document-Level Heterogeneous Graph Attention Networks

Authors: Hui Chen, Pengfei Hong, Wei Han, Navonil Majumder, Soujanya Poria

Published in: Cognitive Computation | Issue 2/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We propose a heterogeneous graph attention network to address the problem of dialogue relation extraction. Compared with several popular sequence-based and graph-based models, our method shows superior performance on the benchmark dataset DialogRE. The implementation of this work can be found at https://​github.​com/​declare-lab/​dialog-HGAT Dialogue relation extraction aims to detect the relation between pairs of entities mentioned in a multi-party dialogue. It plays an essential role in understanding the deep logic of dialogues and facilitating the development of intelligent dialogue systems. We introduce a heterogeneous graph attention network to model the cross-sentence relations in a conversation. This heterogeneous graph attention network has modeled multi-type features of the conversation, such as utterance, word, speaker, argument, and entity type information. We compare our method with several popular baselines such as convolutional neural networks and long short-term memory, experimental results show our model outperforms the state-of-the-art method by 9.4%/7.8% F1 scores, and 6.6%/3.9% \(F1_c\) scores in both validation and test sets with only 4.0M parameters. In this work, we present an attention-based heterogeneous graph network to deal with the dialogue relation extraction task in an inductive manner. Experimental results on the dataset DialogRE confirm the effectiveness of our method.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Peng N, Poon H, Quirk C, Toutanova K, Yih WT. Cross-sentence n-ary relation extraction with graph lstms. Trans Assoc Comput Linguist. 2017;5:101–15.CrossRef Peng N, Poon H, Quirk C, Toutanova K, Yih WT. Cross-sentence n-ary relation extraction with graph lstms. Trans Assoc Comput Linguist. 2017;5:101–15.CrossRef
2.
go back to reference Quirk C, Poon H. Distant supervision for relation extraction beyond the sentence boundary. In: Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Long Papers. 2017;1:1171–82. Quirk C, Poon H. Distant supervision for relation extraction beyond the sentence boundary. In: Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Long Papers. 2017;1:1171–82.
3.
go back to reference Li J, Sun Y, Johnson RJ, Sciaky D, Wei CH, Leaman R, et al. BioCreative V CDR task corpus: a resource for chemical disease relation extraction. Database. 2016. Li J, Sun Y, Johnson RJ, Sciaky D, Wei CH, Leaman R, et al. BioCreative V CDR task corpus: a resource for chemical disease relation extraction. Database. 2016.
4.
go back to reference Wu Y, Luo R, Leung HC, Ting HF, Lam TW. Renet: A deep learning approach for extracting gene-disease associations from literature. In: International Conference on Research in Computational Molecular Biology. Springer; 2019;272–84. Wu Y, Luo R, Leung HC, Ting HF, Lam TW. Renet: A deep learning approach for extracting gene-disease associations from literature. In: International Conference on Research in Computational Molecular Biology. Springer; 2019;272–84.
5.
go back to reference Elsahar H, Vougiouklis P, Remaci A, Gravier C, Hare J, Laforest F, et al. T-REx: A Large Scale Alignment of Natural Language with Knowledge Base Triples. In: Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC) 2018. Elsahar H, Vougiouklis P, Remaci A, Gravier C, Hare J, Laforest F, et al. T-REx: A Large Scale Alignment of Natural Language with Knowledge Base Triples. In: Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC) 2018.
6.
go back to reference Yao Y, Ye D, Li P, Han X, Lin Y, Liu Z, et al. DocRED: A Large-Scale Document-Level Relation Extraction Dataset. In:Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. 2019;764–77. Yao Y, Ye D, Li P, Han X, Lin Y, Liu Z, et al. DocRED: A Large-Scale Document-Level Relation Extraction Dataset. In:Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. 2019;764–77.
7.
go back to reference Mesquita F, Cannaviccio M, Schmidek J, Mirza P, Barbosa D. Knowledgenet: A benchmark dataset for knowledge base population. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP); 2019.;749–58. Mesquita F, Cannaviccio M, Schmidek J, Mirza P, Barbosa D. Knowledgenet: A benchmark dataset for knowledge base population. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP); 2019.;749–58.
8.
go back to reference Chia YK, Bing L, Poria S, Si L. RelationPrompt: Leveraging Prompts to Generate Synthetic Data for Zero-Shot Relation Triplet Extraction. In: Findings of the Association for Computational Linguistics: ACL 2022;45–57. Chia YK, Bing L, Poria S, Si L. RelationPrompt: Leveraging Prompts to Generate Synthetic Data for Zero-Shot Relation Triplet Extraction. In: Findings of the Association for Computational Linguistics: ACL 2022;45–57.
9.
go back to reference Wang D, Liu Y. A pilot study of opinion summarization in conversations. In: Proceedings of the 49th annual meeting of the Association for Computational Linguistics: Human language technologies. 2011;331–9. Wang D, Liu Y. A pilot study of opinion summarization in conversations. In: Proceedings of the 49th annual meeting of the Association for Computational Linguistics: Human language technologies. 2011;331–9.
10.
go back to reference Yu D, Sun K, Cardie C, Yu D. Dialogue-Based Relation Extraction. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. 2020;4927–40. Yu D, Sun K, Cardie C, Yu D. Dialogue-Based Relation Extraction. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. 2020;4927–40.
11.
go back to reference Nan G, Guo Z, Sekulic I, Lu W. Reasoning with latent structure refinement for document-level relation extraction. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. 2020;1546–57. Nan G, Guo Z, Sekulic I, Lu W. Reasoning with latent structure refinement for document-level relation extraction. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. 2020;1546–57.
12.
go back to reference Sahu SK, Christopoulou F, Miwa M, Ananiadou S. Inter-sentence Relation Extraction with Document-level Graph Convolutional Neural Network. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. 2019;4309–16. Sahu SK, Christopoulou F, Miwa M, Ananiadou S. Inter-sentence Relation Extraction with Document-level Graph Convolutional Neural Network. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. 2019;4309–16.
13.
go back to reference Christopoulou F, Miwa M, Ananiadou S. Connecting the Dots: Document-level neural relation extraction with edge-oriented graphs. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP). 2019;4927–38. Christopoulou F, Miwa M, Ananiadou S. Connecting the Dots: Document-level neural relation extraction with edge-oriented graphs. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP). 2019;4927–38.
14.
go back to reference Pang B, Lee L. A sentimental education: sentiment analysis using subjectivity summarization based on minimum cuts. In: Proceedings of the 42nd Annual Meeting of the Association for Computational Linguistics (ACL-04). 2004–271-8. Pang B, Lee L. A sentimental education: sentiment analysis using subjectivity summarization based on minimum cuts. In: Proceedings of the 42nd Annual Meeting of the Association for Computational Linguistics (ACL-04). 2004–271-8.
15.
go back to reference Agirre E, Soroa A. Personalizing pagerank for word sense disambiguation. In: Proceedings of the 12th Conference of the European Chapter of the ACL (EACL). 2009;33–41. Agirre E, Soroa A. Personalizing pagerank for word sense disambiguation. In: Proceedings of the 12th Conference of the European Chapter of the ACL (EACL). 2009;33–41.
16.
go back to reference Kipf TN, Welling M. Semi-supervised classification with graph convolutional networks. In:5th International Conference on Learning Representations. 2017. Kipf TN, Welling M. Semi-supervised classification with graph convolutional networks. In:5th International Conference on Learning Representations. 2017.
17.
go back to reference Zhang Y, Qi P, Manning CD. Graph convolution over pruned dependency trees improves relation extraction. In: Proceedings of the 2018 conference on empirical methods in Natural Language Processing. 2018;2205–15. Zhang Y, Qi P, Manning CD. Graph convolution over pruned dependency trees improves relation extraction. In: Proceedings of the 2018 conference on empirical methods in Natural Language Processing. 2018;2205–15.
18.
go back to reference Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, et al. Attention is all you need. In: Adv Neural Inf Process Syst 2017;5998–6008. Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, et al. Attention is all you need. In: Adv Neural Inf Process Syst 2017;5998–6008.
19.
go back to reference Cai D, Lam W. Graph transformer for graph-to-sequence learning. In: AAAI. 2020;7464–71. Cai D, Lam W. Graph transformer for graph-to-sequence learning. In: AAAI. 2020;7464–71.
20.
go back to reference Yao S, Wang T, Wan X. Heterogeneous Graph Transformer for Graph-to-Sequence Learning. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. 2020;7145–54. Yao S, Wang T, Wan X. Heterogeneous Graph Transformer for Graph-to-Sequence Learning. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. 2020;7145–54.
21.
go back to reference Linmei H, Yang T, Shi C, Ji H, Li X. Heterogeneous graph attention networks for semi-supervised short text classification. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP). 2019;4823–32. Linmei H, Yang T, Shi C, Ji H, Li X. Heterogeneous graph attention networks for semi-supervised short text classification. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP). 2019;4823–32.
22.
go back to reference Wang D, Liu P, Zheng Y, Qiu X, Huang X. Heterogeneous Graph Neural Networks for Extractive Document Summarization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. 2020;6209–19. Wang D, Liu P, Zheng Y, Qiu X, Huang X. Heterogeneous Graph Neural Networks for Extractive Document Summarization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. 2020;6209–19.
23.
go back to reference Chen W, Gu Y, Ren Z, He X, Xie H, Guo T, et al. Semi-supervised user profiling with heterogeneous graph attention networks. In: IJCAI. 2019;19:2116–22. Chen W, Gu Y, Ren Z, He X, Xie H, Guo T, et al. Semi-supervised user profiling with heterogeneous graph attention networks. In: IJCAI. 2019;19:2116–22.
24.
go back to reference Peng H, Li J, Gong Q, Song Y, Ning Y, Lai K, et al. Fine-grained event categorization with heterogeneous graph convolutional networks. In: Proceedings of the 28th International Joint Conference on Artificial Intelligence. AAAI Press. 2019;3238–45. Peng H, Li J, Gong Q, Song Y, Ning Y, Lai K, et al. Fine-grained event categorization with heterogeneous graph convolutional networks. In: Proceedings of the 28th International Joint Conference on Artificial Intelligence. AAAI Press. 2019;3238–45.
25.
go back to reference Veličković P, Cucurull G, Casanova A, Romero A, Lio P, Bengio Y. Graph attention networks. In: 6th International Conference on Learning Representations. 2018. Veličković P, Cucurull G, Casanova A, Romero A, Lio P, Bengio Y. Graph attention networks. In: 6th International Conference on Learning Representations. 2018.
26.
go back to reference Pennington J, Socher R, Manning CD. GloVe: Global vectors for word representation. In: Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP); 2014.;1532–43. Pennington J, Socher R, Manning CD. GloVe: Global vectors for word representation. In: Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP); 2014.;1532–43.
27.
go back to reference He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2016;770–8. He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2016;770–8.
28.
go back to reference Chen HY, Zhou E, Choi JD. Robust Coreference Resolution and Entity Linking on Dialogues: Character Identification on TV Show Transcripts. In: Proceedings of the 21st Conference on Computational Natural Language Learning (CoNLL). Vancouver, Canada: Assoc Comput Linguist. 2017;216-25. Chen HY, Zhou E, Choi JD. Robust Coreference Resolution and Entity Linking on Dialogues: Character Identification on TV Show Transcripts. In: Proceedings of the 21st Conference on Computational Natural Language Learning (CoNLL). Vancouver, Canada: Assoc Comput Linguist. 2017;216-25.
29.
go back to reference Zhou E, Choi JD. They exist introducing plural mentions to coreference resolution and entity linking. In: Proceedings of the 27th International Conference on Computational Linguistics; 2018;24–34. Zhou E, Choi JD. They exist introducing plural mentions to coreference resolution and entity linking. In: Proceedings of the 27th International Conference on Computational Linguistics; 2018;24–34.
30.
go back to reference Yang Z, Choi JD. Friends QA: Open-domain question answering on TV show transcripts. In: Proceedings of the 20th Annual SIGdial Meeting on Discourse and Dialogue; 2019; 188–97. Yang Z, Choi JD. Friends QA: Open-domain question answering on TV show transcripts. In: Proceedings of the 20th Annual SIGdial Meeting on Discourse and Dialogue; 2019; 188–97.
31.
go back to reference Poria S, Hazarika D, Majumder N, Naik G, Cambria E, Mihalcea R. MELD: A Multimodal Multi-Party Dataset for Emotion Recognition in Conversations. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics; 2019;527–36. Poria S, Hazarika D, Majumder N, Naik G, Cambria E, Mihalcea R. MELD: A Multimodal Multi-Party Dataset for Emotion Recognition in Conversations. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics; 2019;527–36.
32.
go back to reference Wang L, Cao Z, De Melo G, Liu Z. Relation classification via multi-level attention cnns. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics Long Papers. 2016;1:1298–307. Wang L, Cao Z, De Melo G, Liu Z. Relation classification via multi-level attention cnns. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics Long Papers. 2016;1:1298–307.
33.
go back to reference Zhou P, Shi W, Tian J, Qi Z, Li B, Hao H, et al. Attention-based bidirectional long short-term memory networks for relation classification. In: Proceedings of the 54th annual meeting of the association for computational linguistics (Short papers). 2016;2:207–12. Zhou P, Shi W, Tian J, Qi Z, Li B, Hao H, et al. Attention-based bidirectional long short-term memory networks for relation classification. In: Proceedings of the 54th annual meeting of the association for computational linguistics (Short papers). 2016;2:207–12.
34.
go back to reference Guo Z, Zhang Y, Lu W. Attention Guided Graph Convolutional Networks for Relation Extraction. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. 2019;241–51. Guo Z, Zhang Y, Lu W. Attention Guided Graph Convolutional Networks for Relation Extraction. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. 2019;241–51.
35.
go back to reference Tutte WT. Graph Theory. In: Claren- don Press. 1984. Tutte WT. Graph Theory. In: Claren- don Press. 1984.
36.
go back to reference Koo T, Globerson A, Carreras X, Collins M. Structured prediction models via the matrix-tree theorem. In: Proceedings of the Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning (EMNLP-CoNLL). 2007;141–50. Koo T, Globerson A, Carreras X, Collins M. Structured prediction models via the matrix-tree theorem. In: Proceedings of the Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning (EMNLP-CoNLL). 2007;141–50.
Metadata
Title
Dialogue Relation Extraction with Document-Level Heterogeneous Graph Attention Networks
Authors
Hui Chen
Pengfei Hong
Wei Han
Navonil Majumder
Soujanya Poria
Publication date
20-01-2023
Publisher
Springer US
Published in
Cognitive Computation / Issue 2/2023
Print ISSN: 1866-9956
Electronic ISSN: 1866-9964
DOI
https://doi.org/10.1007/s12559-023-10110-1

Other articles of this Issue 2/2023

Cognitive Computation 2/2023 Go to the issue

Premium Partner