Skip to main content
Top

2016 | OriginalPaper | Chapter

6. Dictionary Learning on Grassmann Manifolds

Authors : Mehrtash Harandi, Richard Hartley, Mathieu Salzmann, Jochen Trumpf

Published in: Algorithmic Advances in Riemannian Geometry and Applications

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Sparse representations have recently led to notable results in various visual recognition tasks. In a separate line of research, Riemannian manifolds have been shown useful for dealing with features and models that do not lie in Euclidean spaces. With the aim of building a bridge between the two realms, we address the problem of sparse coding and dictionary learning in Grassmann manifolds, i.e, the space of linear subspaces. To this end, we introduce algorithms for sparse coding and dictionary learning by embedding Grassmann manifolds into the space of symmetric matrices. Furthermore, to handle nonlinearity in data, we propose positive definite kernels on Grassmann manifolds and make use of them to perform coding and dictionary learning.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
The function that maps each vector \({{y}} \in T_\mathscr {P}\mathscr {M}\) to a point \(\mathscr {X}\) of the manifold that is reached after a unit time by the geodesic starting at \(\mathscr {P}\) with this tangent vector is called the exponential map. For complete manifolds, this map is defined in the whole tangent space \(T_\mathscr {P}\mathscr {M}\). The logarithm map is the inverse of the exponential map, i.e, \({{y}} = \log _{\mathscr {P}}(\mathscr {X})\) is the smallest vector \({{y}}\) such that \(\mathscr {X} = \exp _\mathscr {P}({{y}})\).
 
2
On an abstract Riemannian manifold \({\mathscr {M}}\), the gradient of a smooth real function f at a point \(x \in {\mathscr {M}}\), denoted by \(\mathrm {grad} f(x)\), is the element of \(T_x({\mathscr {M}})\) satisfying \(\langle \mathrm {grad}f(x), \zeta \rangle _x = Df_x[\zeta ]\) for all \(\zeta \in T_x({\mathscr {M}})\). Here, \(Df_x[\zeta ]\) denotes the directional derivative of f at x in the direction of \(\zeta \). The interested reader is referred to [1] for more details on how the gradient of a function on Grassmann manifolds can be computed.
 
3
Another situation where this applies in Computer Vision is the study of the essential manifold, which may be envisaged as the coset space of \(SO(3) \times SO(3)\) modulo a subgroup isomorphic to SO(2). For details see [25].
 
4
O(d) has dimension \(d(d-1)/2\), since its Lie algebra is the set of \(n\times n\) skew-symmetric matrices.
 
5
In our experiments, we observed that the projection kernel almost always outperforms the Binet–Cauchy kernel.
 
Literature
1.
go back to reference P.A. Absil, R. Mahony, R. Sepulchre, Optimization Algorithms on Matrix Manifolds (Princeton University Press, Princeton, 2008)CrossRefMATH P.A. Absil, R. Mahony, R. Sepulchre, Optimization Algorithms on Matrix Manifolds (Princeton University Press, Princeton, 2008)CrossRefMATH
2.
go back to reference M. Aharon, M. Elad, A. Bruckstein, K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans. Signal Process. 54(11), 4311–4322 (2006)CrossRef M. Aharon, M. Elad, A. Bruckstein, K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans. Signal Process. 54(11), 4311–4322 (2006)CrossRef
3.
go back to reference V. Arsigny, P. Fillard, X. Pennec, N. Ayache, Log-Euclidean metrics for fast and simple calculus on diffusion tensors. Magn. Reson. Med. 56(2), 411–421 (2006)CrossRef V. Arsigny, P. Fillard, X. Pennec, N. Ayache, Log-Euclidean metrics for fast and simple calculus on diffusion tensors. Magn. Reson. Med. 56(2), 411–421 (2006)CrossRef
4.
go back to reference R. Basri, D.W. Jacobs, Lambertian reflectance and linear subspaces. IEEE Trans. Pattern Anal. Mach. Intell. 25(2), 218–233 (2003)CrossRef R. Basri, D.W. Jacobs, Lambertian reflectance and linear subspaces. IEEE Trans. Pattern Anal. Mach. Intell. 25(2), 218–233 (2003)CrossRef
5.
go back to reference E. Begelfor, M. Werman, Affine invariance revisited, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2006), pp. 2087–2094 E. Begelfor, M. Werman, Affine invariance revisited, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2006), pp. 2087–2094
6.
go back to reference C. Berg, J.P.R. Christensen, P. Ressel, Harmonic Analysis on Semigroups (Springer, New York, 1984)CrossRefMATH C. Berg, J.P.R. Christensen, P. Ressel, Harmonic Analysis on Semigroups (Springer, New York, 1984)CrossRefMATH
7.
go back to reference E.J. Candès, J. Romberg, T. Tao, Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 52(2), 489–509 (2006)MathSciNetCrossRefMATH E.J. Candès, J. Romberg, T. Tao, Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 52(2), 489–509 (2006)MathSciNetCrossRefMATH
8.
go back to reference H.E. Cetingul, M.J. Wright, P.M. Thompson, R. Vidal, Segmentation of high angular resolution diffusion MRI using sparse Riemannian manifold clustering. IEEE Trans. Med. Imaging 33(2), 301–317 (2014)CrossRef H.E. Cetingul, M.J. Wright, P.M. Thompson, R. Vidal, Segmentation of high angular resolution diffusion MRI using sparse Riemannian manifold clustering. IEEE Trans. Med. Imaging 33(2), 301–317 (2014)CrossRef
9.
go back to reference S. Chen, C. Sanderson, M. Harandi, B.C. Lovell, Improved image set classification via joint sparse approximated nearest subspaces, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2013), pp. 452–459 S. Chen, C. Sanderson, M. Harandi, B.C. Lovell, Improved image set classification via joint sparse approximated nearest subspaces, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2013), pp. 452–459
10.
go back to reference N. Dalal, B. Triggs, Histograms of oriented gradients for human detection, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2005), pp. 886–893 N. Dalal, B. Triggs, Histograms of oriented gradients for human detection, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2005), pp. 886–893
12.
go back to reference M. Elad, Sparse and Redundant Representations - From Theory to Applications in Signal and Image Processing (Springer, New York, 2010)CrossRefMATH M. Elad, Sparse and Redundant Representations - From Theory to Applications in Signal and Image Processing (Springer, New York, 2010)CrossRefMATH
13.
go back to reference E. Elhamifar, R. Vidal, Sparse subspace clustering: algorithm, theory, and applications. IEEE Trans. Pattern Anal. Mach. Intell. 35(11), 2765–2781 (2013)CrossRef E. Elhamifar, R. Vidal, Sparse subspace clustering: algorithm, theory, and applications. IEEE Trans. Pattern Anal. Mach. Intell. 35(11), 2765–2781 (2013)CrossRef
14.
go back to reference M. Faraki, M. Harandi, F. Porikli, More about VLAD: a leap from Euclidean to Riemannian manifolds, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2015), pp. 4951–4960 M. Faraki, M. Harandi, F. Porikli, More about VLAD: a leap from Euclidean to Riemannian manifolds, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2015), pp. 4951–4960
15.
go back to reference K.A. Gallivan, A. Srivastava, X. Liu, P. Van Dooren, Efficient algorithms for inferences on Grassmann manifolds, in IEEE Workshop on Statistical Signal Processing (2003), pp. 315–318 K.A. Gallivan, A. Srivastava, X. Liu, P. Van Dooren, Efficient algorithms for inferences on Grassmann manifolds, in IEEE Workshop on Statistical Signal Processing (2003), pp. 315–318
16.
go back to reference B. Gong, Y. Shi, F. Sha, K. Grauman, Geodesic flow kernel for unsupervised domain adaptation, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2012), pp. 2066–2073 B. Gong, Y. Shi, F. Sha, K. Grauman, Geodesic flow kernel for unsupervised domain adaptation, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2012), pp. 2066–2073
17.
go back to reference R. Gopalan, R. Li, R. Chellappa, Unsupervised adaptation across domain shifts by generating intermediate data representations. IEEE Trans. Pattern Anal. Mach. Intell. 36(11), 2288–2302 (2014). doi:10.1109/TPAMI.2013.249 R. Gopalan, R. Li, R. Chellappa, Unsupervised adaptation across domain shifts by generating intermediate data representations. IEEE Trans. Pattern Anal. Mach. Intell. 36(11), 2288–2302 (2014). doi:10.​1109/​TPAMI.​2013.​249
18.
go back to reference J. Hamm, D.D. Lee, Grassmann discriminant analysis: a unifying view on subspace-based learning, in Proceedings of the International Conference on Machine Learning (ICML) (2008), pp. 376–383 J. Hamm, D.D. Lee, Grassmann discriminant analysis: a unifying view on subspace-based learning, in Proceedings of the International Conference on Machine Learning (ICML) (2008), pp. 376–383
19.
go back to reference M. Harandi, M. Salzmann, Riemannian coding and dictionary learning: kernels to the rescue, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2015), pp. 3926–3935 M. Harandi, M. Salzmann, Riemannian coding and dictionary learning: kernels to the rescue, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2015), pp. 3926–3935
20.
go back to reference M. Harandi, R. Hartley, C. Shen, B. Lovell, C. Sanderson, Extrinsic methods for coding and dictionary learning on Grassmann manifolds. Int. J. Comput. Vis. 114(2–3), 113–136 (2015)MathSciNetCrossRef M. Harandi, R. Hartley, C. Shen, B. Lovell, C. Sanderson, Extrinsic methods for coding and dictionary learning on Grassmann manifolds. Int. J. Comput. Vis. 114(2–3), 113–136 (2015)MathSciNetCrossRef
21.
go back to reference M.T. Harandi, M. Salzmann, S. Jayasumana, R. Hartley, H. Li, Expanding the family of Grassmannian kernels: an embedding perspective, in Proceedings of the European Conference on Computer Vision (ECCV), vol. 8695, Lecture Notes in Computer Science, ed. by D. Fleet, T. Pajdla, B. Schiele, T. Tuytelaars (Springer International Publishing, Cham, 2014), pp. 408–423. doi:10.1007/978-3-319-10584-0_27 M.T. Harandi, M. Salzmann, S. Jayasumana, R. Hartley, H. Li, Expanding the family of Grassmannian kernels: an embedding perspective, in Proceedings of the European Conference on Computer Vision (ECCV), vol. 8695, Lecture Notes in Computer Science, ed. by D. Fleet, T. Pajdla, B. Schiele, T. Tuytelaars (Springer International Publishing, Cham, 2014), pp. 408–423. doi:10.​1007/​978-3-319-10584-0_​27
22.
go back to reference M.T. Harandi, R. Hartley, B.C. Lovell, C. Sanderson, Sparse coding on symmetric positive definite manifolds using Bregman divergences. IEEE Trans. Neural Netw. Learn. Syst. (TNNLS) PP(99), 1–1 (2015) M.T. Harandi, R. Hartley, B.C. Lovell, C. Sanderson, Sparse coding on symmetric positive definite manifolds using Bregman divergences. IEEE Trans. Neural Netw. Learn. Syst. (TNNLS) PP(99), 1–1 (2015)
24.
go back to reference U. Helmke, K. Hper, J. Trumpf, Newton’s method on Gramann manifolds (2007) U. Helmke, K. Hper, J. Trumpf, Newton’s method on Gramann manifolds (2007)
25.
go back to reference U. Helmke, K. Hüper, P.Y. Lee, J.B. Moore, Essential matrix estimation using Gauss-Newton iterations on a manifold. Int. J. Comput. Vis. 74(2), 117–136 (2007). doi:10.1007/s11263-006-0005-0 U. Helmke, K. Hüper, P.Y. Lee, J.B. Moore, Essential matrix estimation using Gauss-Newton iterations on a manifold. Int. J. Comput. Vis. 74(2), 117–136 (2007). doi:10.​1007/​s11263-006-0005-0
26.
go back to reference J. Ho, Y. Xie, B. Vemuri, On a nonlinear generalization of sparse coding and dictionary learning, in Proceedings of the International Conference on Machine Learning (ICML) (2013), pp. 1480–1488 J. Ho, Y. Xie, B. Vemuri, On a nonlinear generalization of sparse coding and dictionary learning, in Proceedings of the International Conference on Machine Learning (ICML) (2013), pp. 1480–1488
27.
go back to reference S. Jayasumana, R. Hartley, M. Salzmann, H. Li, M. Harandi, Kernel methods on Riemannian manifolds with Gaussian RBF kernels. IEEE Trans. Pattern Anal. Mach. Intell. 37(12), 2464–2477 (2015). doi:10.1109/TPAMI.2015.2414422 S. Jayasumana, R. Hartley, M. Salzmann, H. Li, M. Harandi, Kernel methods on Riemannian manifolds with Gaussian RBF kernels. IEEE Trans. Pattern Anal. Mach. Intell. 37(12), 2464–2477 (2015). doi:10.​1109/​TPAMI.​2015.​2414422
29.
go back to reference J.M. Lee, Introduction to Smooth Manifolds, vol. 218 (Springer, New York, 2012)CrossRef J.M. Lee, Introduction to Smooth Manifolds, vol. 218 (Springer, New York, 2012)CrossRef
30.
go back to reference J. Mairal, F. Bach, J. Ponce, G. Sapiro, A. Zisserman, Discriminative learned dictionaries for local image analysis, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (IEEE, 2008), pp. 1–8 J. Mairal, F. Bach, J. Ponce, G. Sapiro, A. Zisserman, Discriminative learned dictionaries for local image analysis, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (IEEE, 2008), pp. 1–8
31.
go back to reference J. Mairal, M. Elad, G. Sapiro, Sparse representation for color image restoration. IEEE Trans. Image Process. (TIP) 17(1), 53–69 (2008)MathSciNetCrossRefMATH J. Mairal, M. Elad, G. Sapiro, Sparse representation for color image restoration. IEEE Trans. Image Process. (TIP) 17(1), 53–69 (2008)MathSciNetCrossRefMATH
32.
go back to reference J.H. Manton, A globally convergent numerical algorithm for computing the centre of mass on compact lie groups. Int. Conf. Control Autom. Robot. Vis. 3, 2211–2216 (2004) J.H. Manton, A globally convergent numerical algorithm for computing the centre of mass on compact lie groups. Int. Conf. Control Autom. Robot. Vis. 3, 2211–2216 (2004)
33.
go back to reference B.A. Olshausen, D.J. Field, Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature 381(6583), 607–609 (1996)CrossRef B.A. Olshausen, D.J. Field, Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature 381(6583), 607–609 (1996)CrossRef
34.
go back to reference R. Ramamoorthi, Analytic PCA construction for theoretical analysis of lighting variability in images of a Lambertian object. IEEE Trans. Pattern Anal. Mach. Intell. 24(10), 1322–1333 (2002)CrossRef R. Ramamoorthi, Analytic PCA construction for theoretical analysis of lighting variability in images of a Lambertian object. IEEE Trans. Pattern Anal. Mach. Intell. 24(10), 1322–1333 (2002)CrossRef
35.
go back to reference B. Schölkopf, R. Herbrich, A.J. Smola, A generalized representer theorem, Computational Learning Theory (Springer, New York, 2001), pp. 416–426CrossRef B. Schölkopf, R. Herbrich, A.J. Smola, A generalized representer theorem, Computational Learning Theory (Springer, New York, 2001), pp. 416–426CrossRef
36.
go back to reference J. Shawe-Taylor, N. Cristianini, Kernel Methods for Pattern Analysis (Cambridge University Press, Cambridge, 2004)CrossRefMATH J. Shawe-Taylor, N. Cristianini, Kernel Methods for Pattern Analysis (Cambridge University Press, Cambridge, 2004)CrossRefMATH
37.
go back to reference S. Shirazi, M. Harandi, B. Lovell, C. Sanderson, Object tracking via non-Euclidean geometry: a Grassmann approach, in IEEE Winter Conference on Applications of Computer Vision (WACV) (2014), pp. 901–908. doi:10.1109/WACV.2014.6836008 S. Shirazi, M. Harandi, B. Lovell, C. Sanderson, Object tracking via non-Euclidean geometry: a Grassmann approach, in IEEE Winter Conference on Applications of Computer Vision (WACV) (2014), pp. 901–908. doi:10.​1109/​WACV.​2014.​6836008
38.
go back to reference I. Steinwart, A. Christmann, Support Vector Machines (Springer, Berlin, 2008) I. Steinwart, A. Christmann, Support Vector Machines (Springer, Berlin, 2008)
39.
go back to reference R. Subbarao, P. Meer, Nonlinear mean shift over Riemannian manifolds. Int. J. Comput. Vis. 84(1), 1–20 (2009)CrossRef R. Subbarao, P. Meer, Nonlinear mean shift over Riemannian manifolds. Int. J. Comput. Vis. 84(1), 1–20 (2009)CrossRef
40.
go back to reference R. Tibshirani, Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B (Methodol.) 58, 267–288 (1996) R. Tibshirani, Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B (Methodol.) 58, 267–288 (1996)
41.
go back to reference P. Turaga, A. Veeraraghavan, A. Srivastava, R. Chellappa, Statistical computations on Grassmann and Stiefel manifolds for image and video-based recognition. IEEE Trans. Pattern Anal. Mach. Intell. 33(11), 2273–2286 (2011) P. Turaga, A. Veeraraghavan, A. Srivastava, R. Chellappa, Statistical computations on Grassmann and Stiefel manifolds for image and video-based recognition. IEEE Trans. Pattern Anal. Mach. Intell. 33(11), 2273–2286 (2011)
42.
go back to reference R. Vemulapalli, J.K. Pillai, R. Chellappa, Kernel learning for extrinsic classification of manifold features, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2013), pp. 1782–1789 R. Vemulapalli, J.K. Pillai, R. Chellappa, Kernel learning for extrinsic classification of manifold features, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2013), pp. 1782–1789
43.
go back to reference J. Wang, J. Yang, K. Yu, F. Lv, T. Huang, Y. Gong, Locality-constrained linear coding for image classification, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2010), pp. 3360–3367 J. Wang, J. Yang, K. Yu, F. Lv, T. Huang, Y. Gong, Locality-constrained linear coding for image classification, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2010), pp. 3360–3367
44.
go back to reference Y. Wang, G. Mori, Human action recognition by semilatent topic models. IEEE Trans. Pattern Anal. Mach. Intell. 31(10), 1762–1774 (2009) Y. Wang, G. Mori, Human action recognition by semilatent topic models. IEEE Trans. Pattern Anal. Mach. Intell. 31(10), 1762–1774 (2009)
45.
go back to reference L. Wolf, A. Shashua, Learning over sets using kernel principal angles. J. Mach. Learn. Res. 4, 913–931 (2003)MathSciNetMATH L. Wolf, A. Shashua, Learning over sets using kernel principal angles. J. Mach. Learn. Res. 4, 913–931 (2003)MathSciNetMATH
46.
go back to reference J. Wright, A.Y. Yang, A. Ganesh, S.S. Sastry, Y. Ma, Robust face recognition via sparse representation. IEEE Trans. Pattern Anal. Mach. Intell. 31(2), 210–227 (2009) J. Wright, A.Y. Yang, A. Ganesh, S.S. Sastry, Y. Ma, Robust face recognition via sparse representation. IEEE Trans. Pattern Anal. Mach. Intell. 31(2), 210–227 (2009)
47.
go back to reference J. Wright, Y. Ma, J. Mairal, G. Sapiro, T.S. Huang, S. Yan, Sparse representation for computer vision and pattern recognition. Proc. IEEE 98(6), 1031–1044 (2010)CrossRef J. Wright, Y. Ma, J. Mairal, G. Sapiro, T.S. Huang, S. Yan, Sparse representation for computer vision and pattern recognition. Proc. IEEE 98(6), 1031–1044 (2010)CrossRef
48.
go back to reference J. Yang, K. Yu, Y. Gong, T. Huang, Linear spatial pyramid matching using sparse coding for image classification, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2009), pp. 1794–1801 J. Yang, K. Yu, Y. Gong, T. Huang, Linear spatial pyramid matching using sparse coding for image classification, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2009), pp. 1794–1801
Metadata
Title
Dictionary Learning on Grassmann Manifolds
Authors
Mehrtash Harandi
Richard Hartley
Mathieu Salzmann
Jochen Trumpf
Copyright Year
2016
DOI
https://doi.org/10.1007/978-3-319-45026-1_6

Premium Partner