Skip to main content
Top
Published in: Journal of Electronic Materials 10/2021

28-07-2021 | Original Research Article

Dielectric Properties and DC Bias Characteristics of BaTi1-mZrmO3-x mol.% MgO-4.5 mol.% Gd2O3-2 mol.% SiO2 Ceramics

Authors: Sea-Fue Wang, Yung-Fu Hsu, Chun-Wei Chang, Yi-Le Liao, Jian-Hua Li, Yuan-Cheng Lai

Published in: Journal of Electronic Materials | Issue 10/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this study, BaTi1-mZrmO3-4.5 mol.% Gd2O3-2.0 mol.% SiO2 ceramics with different Zr/Ti ratios and MgO contents were prepared via solid-state reaction. The MgO addition decreased the densification temperatures of the ceramics and increased the second phase Ba2GdZrO5.5 content. The temperature coefficient of capacitance curves of the ceramics had an almost linear variation with temperature, with negative temperature coefficients. With the increase of the Zr4+/Ti4+ ratio and MgO content, the temperature coefficient of capacitance rotated counter clockwise due to the lower Tm temperature, and a smaller tan δ and a higher electrical resistance were obtained at room temperature. The Zr4+ ion replacement and MgO addition reduced the \({\text{Ti}}^\prime_{{\text{Ti}}}\) concentrations, and therefore, lessened the hopping conduction between Ti4+ and Ti3+ ions, while excess MgO produced \({V_O^{ \bullet \bullet }}\) and had an opposing effect. Additionally, larger amounts of MgO led to smaller grain sizes, and thus, more insulating grain boundaries. The change in the dielectric constant with the bias field, a typical nonlinear dielectric behavior, decreased with increasing MgO content and Zr4+/Ti4+ ratio. For BaTi0.70Zr0.30O3 ceramics with additives of 6 mol.% MgO, 4.5 mol.% Gd2O3, and 2 mol.% SiO2, the dielectric constant changed by a minimum value of 0.37% under a bias of 2.5 kV/mm.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference K. Hong, T.H. Lee, J.M. Suh, S.H. Yoon, and H.W. Jang, J. Mater. Chem. C 7, 9782 (2019).CrossRef K. Hong, T.H. Lee, J.M. Suh, S.H. Yoon, and H.W. Jang, J. Mater. Chem. C 7, 9782 (2019).CrossRef
2.
go back to reference D. Zhan, Q. Xu, D.P. Huang, H.X. Liu, W. Chen, and F. Zhang, J. Phys. Chem. Solids 114, 220 (2018).CrossRef D. Zhan, Q. Xu, D.P. Huang, H.X. Liu, W. Chen, and F. Zhang, J. Phys. Chem. Solids 114, 220 (2018).CrossRef
3.
4.
go back to reference D. Zhan, Q. Xu, D.P. Huang, H.X. Liu, W. Chen, and F. Zhang, J. Alloys Compd. 682, 594 (2016).CrossRef D. Zhan, Q. Xu, D.P. Huang, H.X. Liu, W. Chen, and F. Zhang, J. Alloys Compd. 682, 594 (2016).CrossRef
5.
go back to reference Q. Luo, X. Li, Z. Yao, L. Zhang, J. Xiea, H. Hao, M. Cao, A. Manan, and H. Liu, Ceram. Int. 44, 5304 (2018).CrossRef Q. Luo, X. Li, Z. Yao, L. Zhang, J. Xiea, H. Hao, M. Cao, A. Manan, and H. Liu, Ceram. Int. 44, 5304 (2018).CrossRef
6.
go back to reference T. Tsurumi, M. Shono, H. Kakemoto, S. Wada, K. Saito, and H. Chazono, J. Electroceramics 21, 17 (2008).CrossRef T. Tsurumi, M. Shono, H. Kakemoto, S. Wada, K. Saito, and H. Chazono, J. Electroceramics 21, 17 (2008).CrossRef
7.
go back to reference M. Tamura, S. Takagi, D. Sakurai, S. Aman, Y. Kamada, Dielectric ceramic composition and electronic component. US 8,450,230 B2 (2013). M. Tamura, S. Takagi, D. Sakurai, S. Aman, Y. Kamada, Dielectric ceramic composition and electronic component. US 8,450,230 B2 (2013).
8.
go back to reference J. Zhao, L. Li, Y. Wang, and Z. Gui, Mater. Sci. Eng. B-Adv. 99, 207 (2003).CrossRef J. Zhao, L. Li, Y. Wang, and Z. Gui, Mater. Sci. Eng. B-Adv. 99, 207 (2003).CrossRef
9.
10.
11.
go back to reference G. Yang, Z. Yue, J. Zhao, H. Wen, X. Wang, and L. Li, J. Phys. D 39, 3702 (2006).CrossRef G. Yang, Z. Yue, J. Zhao, H. Wen, X. Wang, and L. Li, J. Phys. D 39, 3702 (2006).CrossRef
12.
13.
go back to reference T. Tsurumi, Y. Yamamoto, H. Kakemoto, and S. Wada, J. Mater. Res. 17, 755 (2002).CrossRef T. Tsurumi, Y. Yamamoto, H. Kakemoto, and S. Wada, J. Mater. Res. 17, 755 (2002).CrossRef
14.
go back to reference J.Q. Zhao, L.T. Li, T. Li, Z.L. Gui, and Y.C. Zhang, Key Eng. Mater. 224–226, 59 (2002).CrossRef J.Q. Zhao, L.T. Li, T. Li, Z.L. Gui, and Y.C. Zhang, Key Eng. Mater. 224–226, 59 (2002).CrossRef
15.
go back to reference R. Liang, X.L. Dong, Y. Chen, F. Cao, and Y.L. Wang, Ceram. Int. 33, 957 (2007).CrossRef R. Liang, X.L. Dong, Y. Chen, F. Cao, and Y.L. Wang, Ceram. Int. 33, 957 (2007).CrossRef
16.
go back to reference C. Mao, S. Yan, C. Yao, F. Cao, G. Wang, X. Dong, and X. Men, Mater. Res. Express. 4, 016302 (2017).CrossRef C. Mao, S. Yan, C. Yao, F. Cao, G. Wang, X. Dong, and X. Men, Mater. Res. Express. 4, 016302 (2017).CrossRef
17.
go back to reference C. Zhu, X. Wang, Q. Zhao, Z. Cai, Z. Cen, and L. Li, J. Eur. Ceram. Soc. 39, 1142 (2019).CrossRef C. Zhu, X. Wang, Q. Zhao, Z. Cai, Z. Cen, and L. Li, J. Eur. Ceram. Soc. 39, 1142 (2019).CrossRef
18.
go back to reference H. Gong, X. Wang, S. Zhang, H. Wen, and L. Li, J. Eur. Ceram. Soc. 34, 1733 (2014).CrossRef H. Gong, X. Wang, S. Zhang, H. Wen, and L. Li, J. Eur. Ceram. Soc. 34, 1733 (2014).CrossRef
19.
go back to reference D. Zhan, Q. Xu, D. Huang, H.J. Sun, F. Gao, and F. Zhang, J. Electron. Mater. 46, 4503 (2017).CrossRef D. Zhan, Q. Xu, D. Huang, H.J. Sun, F. Gao, and F. Zhang, J. Electron. Mater. 46, 4503 (2017).CrossRef
20.
go back to reference Y. Zhang, Y. Li, H. Zhu, Z. Fu, and Q. Zhang, J. Mater. Sci. Mater. Electron. 27, 9572 (2016).CrossRef Y. Zhang, Y. Li, H. Zhu, Z. Fu, and Q. Zhang, J. Mater. Sci. Mater. Electron. 27, 9572 (2016).CrossRef
21.
go back to reference X. Diez-Betriu, J.E. Garcia, C. Ostos, A.U. Boya, D.A. Ochoa, L. Mestres, and R. Perez, Mater. Chem. Phys. 125, 493 (2011).CrossRef X. Diez-Betriu, J.E. Garcia, C. Ostos, A.U. Boya, D.A. Ochoa, L. Mestres, and R. Perez, Mater. Chem. Phys. 125, 493 (2011).CrossRef
22.
24.
go back to reference L. Santos-Gómez, L. León-Reina, J.M. Porras-Vázquez, E.R. Losilla, and D. Marrero-López, Solid State Ion. 239, 1 (2013).CrossRef L. Santos-Gómez, L. León-Reina, J.M. Porras-Vázquez, E.R. Losilla, and D. Marrero-López, Solid State Ion. 239, 1 (2013).CrossRef
26.
27.
go back to reference Y. Tsur, A. Hitomi, I. Scrymgeour, and C.A. Ran, Jpn. J. Appl. Phys. 40, 255 (2001).CrossRef Y. Tsur, A. Hitomi, I. Scrymgeour, and C.A. Ran, Jpn. J. Appl. Phys. 40, 255 (2001).CrossRef
28.
go back to reference Y. Sakabe, Y. Hamaji, H. Sano, and N. Wada, Jpn. J. Appl. Phys. 41, 5668 (2002).CrossRef Y. Sakabe, Y. Hamaji, H. Sano, and N. Wada, Jpn. J. Appl. Phys. 41, 5668 (2002).CrossRef
29.
go back to reference S.H. Yoon, M.H. Hong, J.O. Hong, Y.T. Kim, and K.H. Hur, J. Appl. Phys. 102, 054105 (2007).CrossRef S.H. Yoon, M.H. Hong, J.O. Hong, Y.T. Kim, and K.H. Hur, J. Appl. Phys. 102, 054105 (2007).CrossRef
30.
go back to reference L. Li, R. Guo, P. Zhang, J. Zhao, and H. Wang, J. Rare Earths 25, 151 (2007).CrossRef L. Li, R. Guo, P. Zhang, J. Zhao, and H. Wang, J. Rare Earths 25, 151 (2007).CrossRef
31.
go back to reference S. Wang, S. Zhang, X. Zhou, B. Li, and Z. Chen, Mater. Lett. 59, 2457 (2005).CrossRef S. Wang, S. Zhang, X. Zhou, B. Li, and Z. Chen, Mater. Lett. 59, 2457 (2005).CrossRef
32.
go back to reference M.A. Gomes, A.S. Lima, K.I.B. Eguiluz, and G.R. Salazar-Banda, J. Mater. Sci. 51, 4709 (2016).CrossRef M.A. Gomes, A.S. Lima, K.I.B. Eguiluz, and G.R. Salazar-Banda, J. Mater. Sci. 51, 4709 (2016).CrossRef
33.
35.
go back to reference H. Kishi, N. Kohzu, J. Sugino, H. Ohsato, Y. Iguchi, and T. Okuda, J. Eur. Ceram. Soc. 19, 1043 (1999).CrossRef H. Kishi, N. Kohzu, J. Sugino, H. Ohsato, Y. Iguchi, and T. Okuda, J. Eur. Ceram. Soc. 19, 1043 (1999).CrossRef
36.
go back to reference Electrical Industry Alliance (EIA), World Capacitor Trade Statistics (WCTA), 2002. Electrical Industry Alliance (EIA), World Capacitor Trade Statistics (WCTA), 2002.
Metadata
Title
Dielectric Properties and DC Bias Characteristics of BaTi1-mZrmO3-x mol.% MgO-4.5 mol.% Gd2O3-2 mol.% SiO2 Ceramics
Authors
Sea-Fue Wang
Yung-Fu Hsu
Chun-Wei Chang
Yi-Le Liao
Jian-Hua Li
Yuan-Cheng Lai
Publication date
28-07-2021
Publisher
Springer US
Published in
Journal of Electronic Materials / Issue 10/2021
Print ISSN: 0361-5235
Electronic ISSN: 1543-186X
DOI
https://doi.org/10.1007/s11664-021-09103-3

Other articles of this Issue 10/2021

Journal of Electronic Materials 10/2021 Go to the issue