Skip to main content
Top

2019 | OriginalPaper | Chapter

3. Diesel-Like Biofuels

Authors : Basanta Kumara Behera, Ajit Varma

Published in: Bioenergy for Sustainability and Security

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Diesel fuel is a mixture of hydrocarbons obtained by petroleum diesel, or petrodiesel is produced by distilling crude oil between 200 °C (392 °F) and 350 °C (662 °F) at atmospheric pressure. The important properties which are used to characterize diesel fuel include cetane number (or cetane index), fuel volatility, density, viscosity, cold behaviour and sulphur content. Diesel fuel specifications differ for various fuel grades and in different countries. Biodiesel is a fuel developed from vegetable oil, animal fat and algal lipids which works in a diesel engine. These fuels are made as greener and cleaner alternatives to petrol and diesel.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Demirbas, A (2009). Production of biodiesel fuels from linseed oil using methanol and ethanol in non-catalytic SCF conditions. Biomass Bioenergy, 33: 113–118.CrossRef Demirbas, A (2009). Production of biodiesel fuels from linseed oil using methanol and ethanol in non-catalytic SCF conditions. Biomass Bioenergy, 33: 113–118.CrossRef
2.
go back to reference Demirbas, A (2009). Biodiesel from waste cooking oil via base-catalytic and supercritical methanol transesterification. Energy Conversion and Management, 50(4): 923–927.CrossRef Demirbas, A (2009). Biodiesel from waste cooking oil via base-catalytic and supercritical methanol transesterification. Energy Conversion and Management, 50(4): 923–927.CrossRef
3.
go back to reference Demirbas, A (2009). EnergyProgress and recent trends in biodiesel fuels. Energy Conversion and Management, 50: 923–927.CrossRef Demirbas, A (2009). EnergyProgress and recent trends in biodiesel fuels. Energy Conversion and Management, 50: 923–927.CrossRef
4.
go back to reference Shahid, EM et al (2012). Effect of Used Cooking Oil Methyl Ester on Compression Ignition Engine. Journal of Quality and Technology Management, VIII (II), 4: 91–104. Shahid, EM et al (2012). Effect of Used Cooking Oil Methyl Ester on Compression Ignition Engine. Journal of Quality and Technology Management, VIII (II), 4: 91–104.
5.
go back to reference Lotero, E et al (2005). Synthesis of biodiesel via acid catalysis. Ind. Eng. Chem. Res., 44(14): 5353–5363.CrossRef Lotero, E et al (2005). Synthesis of biodiesel via acid catalysis. Ind. Eng. Chem. Res., 44(14): 5353–5363.CrossRef
6.
go back to reference Zhang, Y et al (2003a). Biodiesel production from waste cooking oil: 1. Process design and technological assessment. Bioresour. Tech., 89(1): 1–16.CrossRef Zhang, Y et al (2003a). Biodiesel production from waste cooking oil: 1. Process design and technological assessment. Bioresour. Tech., 89(1): 1–16.CrossRef
7.
go back to reference Zhang, Y et al (2003b). Biodiesel production from waste cooking oil: 2. Economic assessment and sensitivity analysis. Bioresour. Tech., 90(3): 229–240.CrossRef Zhang, Y et al (2003b). Biodiesel production from waste cooking oil: 2. Economic assessment and sensitivity analysis. Bioresour. Tech., 90(3): 229–240.CrossRef
8.
go back to reference Wang, Y et al (2006). Comparison of two different processes to synthesize biodiesel by waste cooking oil. J. Mol. Catal. A-Chem., 252(1–2): 107–112.CrossRef Wang, Y et al (2006). Comparison of two different processes to synthesize biodiesel by waste cooking oil. J. Mol. Catal. A-Chem., 252(1–2): 107–112.CrossRef
9.
go back to reference Leung, DYC and Guo Y (2006). Transesterification of neat and used frying oil: Optimization for biodiesel production. Fuel Process Tech., 87(10): 883–890.CrossRef Leung, DYC and Guo Y (2006). Transesterification of neat and used frying oil: Optimization for biodiesel production. Fuel Process Tech., 87(10): 883–890.CrossRef
10.
go back to reference Meher, LC et al (2006). Technical aspects of biodiesel production by transesterification—A review. Renew. Sust. Energ. Rev., 10(3): 248–268.CrossRef Meher, LC et al (2006). Technical aspects of biodiesel production by transesterification—A review. Renew. Sust. Energ. Rev., 10(3): 248–268.CrossRef
11.
go back to reference Bournay, L et al (2005). New heterogeneous process for biodiesel production: A way to improve the quality and the value of the crude glycerin produced by biodiesel plants. Catal. Today, 106(1–4): 190–192.CrossRef Bournay, L et al (2005). New heterogeneous process for biodiesel production: A way to improve the quality and the value of the crude glycerin produced by biodiesel plants. Catal. Today, 106(1–4): 190–192.CrossRef
12.
go back to reference Cao, F et al (2008). Biodiesel production from high acid value waste frying oil catalyzed by superacid heteropolyacid. Biotech. Bioengin, 101(1): 93–100.CrossRef Cao, F et al (2008). Biodiesel production from high acid value waste frying oil catalyzed by superacid heteropolyacid. Biotech. Bioengin, 101(1): 93–100.CrossRef
13.
go back to reference Srinivasan, S (2009). The food v fuel debate: A nuanced view of incentive structures. Renew. Energ., 34(4): 950–954.CrossRef Srinivasan, S (2009). The food v fuel debate: A nuanced view of incentive structures. Renew. Energ., 34(4): 950–954.CrossRef
14.
go back to reference Canakci, M and Van Gerpen, JH (2001). Biodiesel production from oils and fats with high free fatty acids. Transactions of the American Society of Agricultural Engineers, 44(6): 1429–1436. Canakci, M and Van Gerpen, JH (2001). Biodiesel production from oils and fats with high free fatty acids. Transactions of the American Society of Agricultural Engineers, 44(6): 1429–1436.
15.
go back to reference Hama, S et al (2004). Effect of fatty acid membrane composition on whole-cell biocatalysts for biodiesel-fuel production. Biochemical Engineering Journal, 21(2): 155–160.CrossRef Hama, S et al (2004). Effect of fatty acid membrane composition on whole-cell biocatalysts for biodiesel-fuel production. Biochemical Engineering Journal, 21(2): 155–160.CrossRef
16.
go back to reference Kusdiana, D and Saka, S (2001). Biodiesel fuel from rapeseed oil as prepared in supercritical methanol. Fuel, 80: 225–231.CrossRef Kusdiana, D and Saka, S (2001). Biodiesel fuel from rapeseed oil as prepared in supercritical methanol. Fuel, 80: 225–231.CrossRef
17.
go back to reference Demirbas, A (2002). Biodiesel from vegetable oils via transesterification in supercritical methanol. Energy Conversion & Management, 43: 2349–2356.CrossRef Demirbas, A (2002). Biodiesel from vegetable oils via transesterification in supercritical methanol. Energy Conversion & Management, 43: 2349–2356.CrossRef
18.
go back to reference Warabi, Y et al (2004). Reactivity of triglycerides and fatty acids of rapeseed oil in supercritical alcohols. Bioresource Technology, 91: 283–287.CrossRef Warabi, Y et al (2004). Reactivity of triglycerides and fatty acids of rapeseed oil in supercritical alcohols. Bioresource Technology, 91: 283–287.CrossRef
19.
go back to reference Kusdiana, D and Saka, S (2004). Effects of water on biodiesel fuel production by supercritical methanol treatment. Bioresource Technology, 91: 289–295.CrossRef Kusdiana, D and Saka, S (2004). Effects of water on biodiesel fuel production by supercritical methanol treatment. Bioresource Technology, 91: 289–295.CrossRef
20.
go back to reference Glisic, S and Skala, D (2009).The problems in design and detailed analyses of energy consumption for biodiesel synthesis at supercritical conditions. The Journal of Supercritical Fluids, 49: 293–301.CrossRef Glisic, S and Skala, D (2009).The problems in design and detailed analyses of energy consumption for biodiesel synthesis at supercritical conditions. The Journal of Supercritical Fluids, 49: 293–301.CrossRef
21.
go back to reference Deshpande, A et al (2010). Supercritical biodiesel production and power cogeneration: Technical and economic feasibilities. Bioresource Technology, 101: 1834–1843.CrossRef Deshpande, A et al (2010). Supercritical biodiesel production and power cogeneration: Technical and economic feasibilities. Bioresource Technology, 101: 1834–1843.CrossRef
22.
go back to reference Math, MC et al (2010). Technologies for biodiesel production from used cooking oil—A review. Energy for Sustainable Development, 14(4): 339–345.CrossRef Math, MC et al (2010). Technologies for biodiesel production from used cooking oil—A review. Energy for Sustainable Development, 14(4): 339–345.CrossRef
23.
go back to reference Schuchardt, U et al (1998). Transesterification of vegetable oils: A review. Journal of the Brazilian Chemical Society, 9(3): 199–210.CrossRef Schuchardt, U et al (1998). Transesterification of vegetable oils: A review. Journal of the Brazilian Chemical Society, 9(3): 199–210.CrossRef
24.
go back to reference Meher, LC et al (2006). Technical aspects of biodiesel production by transesterification—A review. Renewable and Sustainable Energy Reviews, 10: 248–268.CrossRef Meher, LC et al (2006). Technical aspects of biodiesel production by transesterification—A review. Renewable and Sustainable Energy Reviews, 10: 248–268.CrossRef
25.
go back to reference Al-Zuhair Sulaiman et al (2006). A new method for preparing raw material for biodiesel production. Biochemical Engineering Journal, 30: 212–217.CrossRef Al-Zuhair Sulaiman et al (2006). A new method for preparing raw material for biodiesel production. Biochemical Engineering Journal, 30: 212–217.CrossRef
26.
go back to reference Ma, F et al (1999).The effect of mixing on transesterification of beef tallow. BioresourTechnol, 69: 289–293.CrossRef Ma, F et al (1999).The effect of mixing on transesterification of beef tallow. BioresourTechnol, 69: 289–293.CrossRef
27.
go back to reference Ogunniyi, DS (2006). Castor oil: A vital industrial raw material. BioresourceTechnol, 97: 1086–1091.CrossRef Ogunniyi, DS (2006). Castor oil: A vital industrial raw material. BioresourceTechnol, 97: 1086–1091.CrossRef
28.
go back to reference Ogunwole, OA (2012). Production of Biodiesel from Jatropha Oil (Curcas Oil). Research Journal of Chemical Sciences, 2(11): 30–33. Ogunwole, OA (2012). Production of Biodiesel from Jatropha Oil (Curcas Oil). Research Journal of Chemical Sciences, 2(11): 30–33.
30.
go back to reference Peterson, et al (2005). Biodiesel from Yellow Mustard Oil. National Institute for Advanced Transportation Technology. KLK311, NIATT Report Number N05–06. Peterson, et al (2005). Biodiesel from Yellow Mustard Oil. National Institute for Advanced Transportation Technology. KLK311, NIATT Report Number N05–06.
31.
go back to reference Hartman and Eviana (2008). A Promising Oil Alternative: Algae Energy. The Washington Post. Retrieved 10 June 2008. Hartman and Eviana (2008). A Promising Oil Alternative: Algae Energy. The Washington Post. Retrieved 10 June 2008.
32.
go back to reference Dyer and Gwynne (2008). A replacement for oil. The Chatham Daily News. Dyer and Gwynne (2008). A replacement for oil. The Chatham Daily News.
33.
go back to reference Sheehan, J et al (1998). Look Back at the U S Department of Energy’s Aquatic Species Program—Biodiesel from Algae.Vol. 328. National Renewable Energy Laboratory, CO, USA. Sheehan, J et al (1998). Look Back at the U S Department of Energy’s Aquatic Species Program—Biodiesel from Algae.Vol. 328. National Renewable Energy Laboratory, CO, USA.
34.
go back to reference Huesemann, MH et al (2009). Biomass productivities in wild type and pigment mutant of Cyclotella sp. (diatom). Appl Biochem Biotechnol, 157(3): 507–526.CrossRef Huesemann, MH et al (2009). Biomass productivities in wild type and pigment mutant of Cyclotella sp. (diatom). Appl Biochem Biotechnol, 157(3): 507–526.CrossRef
35.
go back to reference Yang, Jia et al (2010). Life-cycle analysis on biodiesel production from microalgae: Water footprint and nutrients balance (PDF). Bioresources Technology, 10: 1016. Yang, Jia et al (2010). Life-cycle analysis on biodiesel production from microalgae: Water footprint and nutrients balance (PDF). Bioresources Technology, 10: 1016.
38.
go back to reference Demirbas, A (2011). Biodiesel from oilgae, biofixation of carbon dioxide by microalgae: A solution to pollution problems. Applied Energy, 88(10): 3541–3547.MathSciNetCrossRef Demirbas, A (2011). Biodiesel from oilgae, biofixation of carbon dioxide by microalgae: A solution to pollution problems. Applied Energy, 88(10): 3541–3547.MathSciNetCrossRef
39.
go back to reference Demirbas, AH (2009). Inexpensive oil and fats feedstocks for production of biodiesel. Energy Education Science and Technology Part A: Energy Science and Research, 23: 1–13. Demirbas, AH (2009). Inexpensive oil and fats feedstocks for production of biodiesel. Energy Education Science and Technology Part A: Energy Science and Research, 23: 1–13.
40.
go back to reference Carriquiry, MA et al (2011). Second generation biofuels: Economics and policies. Energy Policy, 39(7): 4222–4234. CrossRef Carriquiry, MA et al (2011). Second generation biofuels: Economics and policies. Energy Policy, 39(7): 4222–4234. CrossRef
41.
go back to reference Greenwell, J et al (2009). Placing microalgae on the biofuels priority list: A review of the technological challenges. Journal of the Royal Society Interface, 7(46): 703–726. CrossRef Greenwell, J et al (2009). Placing microalgae on the biofuels priority list: A review of the technological challenges. Journal of the Royal Society Interface, 7(46): 703–726. CrossRef
42.
go back to reference Moheimani, NR and Borowitzka, MA (2007). Limits to productivity of the alga Pleurochrysis carterae (haptophyta) grown in outdoor raceway ponds. Biotechnol Bioeng, 96(1): 27–36.CrossRef Moheimani, NR and Borowitzka, MA (2007). Limits to productivity of the alga Pleurochrysis carterae (haptophyta) grown in outdoor raceway ponds. Biotechnol Bioeng, 96(1): 27–36.CrossRef
43.
go back to reference Blanco, AM et al (2007). Outdoor cultivation of lutein-rich cells of Muriellopsis sp. in open ponds. Appl Microbiol Biotechnol, 73(6):1259–1266.CrossRef Blanco, AM et al (2007). Outdoor cultivation of lutein-rich cells of Muriellopsis sp. in open ponds. Appl Microbiol Biotechnol, 73(6):1259–1266.CrossRef
44.
go back to reference Metting, FB (1996). Biodiversity and application of microalgae. Journal of Industrial Microbiology, 17: 477–489.CrossRef Metting, FB (1996). Biodiversity and application of microalgae. Journal of Industrial Microbiology, 17: 477–489.CrossRef
45.
go back to reference Spolaore, P et al (2006). Commercial application of microalgae. Journal of Bioscience and Bioengineering, 101: 87–96.CrossRef Spolaore, P et al (2006). Commercial application of microalgae. Journal of Bioscience and Bioengineering, 101: 87–96.CrossRef
46.
go back to reference Seckbach, J et al (1971). Growth and photosynthesis of Cyanidium caldarium cultured under pure CO2. Israel Journal of Botany, 20: 84–90. Seckbach, J et al (1971). Growth and photosynthesis of Cyanidium caldarium cultured under pure CO2. Israel Journal of Botany, 20: 84–90.
47.
go back to reference Hanagata, N et al (1992). Tolerance of microalgae to high CO2 and high temperature. Phytochemistry, 31(10): 3345–3348.CrossRef Hanagata, N et al (1992). Tolerance of microalgae to high CO2 and high temperature. Phytochemistry, 31(10): 3345–3348.CrossRef
48.
go back to reference Kodama, M et al (1993). A new species of highly CO2-tolerant fast growing marine microalga suitable for high-density culture. Journal of Marine Biotechnology, 1: 21–25. Kodama, M et al (1993). A new species of highly CO2-tolerant fast growing marine microalga suitable for high-density culture. Journal of Marine Biotechnology, 1: 21–25.
49.
go back to reference Miyairi, S (1995). CO2 assimilation in a thermophilic cyanobacterium. Energy Conversion and Management, 36(6–9): 763–766.CrossRef Miyairi, S (1995). CO2 assimilation in a thermophilic cyanobacterium. Energy Conversion and Management, 36(6–9): 763–766.CrossRef
50.
go back to reference Nakano, Y et al (1996). Growth of photosynthetic algae Euglena in high CO2 conditions and its photosynthetic characteristics. Acta Hort, 440: 49–54.CrossRef Nakano, Y et al (1996). Growth of photosynthetic algae Euglena in high CO2 conditions and its photosynthetic characteristics. Acta Hort, 440: 49–54.CrossRef
51.
go back to reference Nagase, H et al (1998). Improvement of microalgal NOx removal in bubble column and airlift reactors. Journal of Fermentation and Bioengineering, 86(4): 421–423.CrossRef Nagase, H et al (1998). Improvement of microalgal NOx removal in bubble column and airlift reactors. Journal of Fermentation and Bioengineering, 86(4): 421–423.CrossRef
52.
go back to reference Miura, Y et al (1993). Stimulation of hydrogen production in algal cells grown under high CO2 concentration and low temperature. Applied Biochemistry and Biotechnology, 39/40: 753–761.CrossRef Miura, Y et al (1993). Stimulation of hydrogen production in algal cells grown under high CO2 concentration and low temperature. Applied Biochemistry and Biotechnology, 39/40: 753–761.CrossRef
53.
go back to reference Matsumoto, H et al (1995). Carbon dioxide fixation by microalgae photosynthesis using actual flue gas discharged from a boiler. Applied Biochemistry and Biotechnology, 51/52: 681–692.CrossRef Matsumoto, H et al (1995). Carbon dioxide fixation by microalgae photosynthesis using actual flue gas discharged from a boiler. Applied Biochemistry and Biotechnology, 51/52: 681–692.CrossRef
54.
go back to reference Li, Q et al (2008). Perspectives of microbial oils for biodiesel production. Appl. Microbiol. Biotechnol., 80: 749–756.CrossRef Li, Q et al (2008). Perspectives of microbial oils for biodiesel production. Appl. Microbiol. Biotechnol., 80: 749–756.CrossRef
56.
go back to reference Carriquiry, M (). U.S. Biodiesel production: Recent developments and prospects. Iowa Agric. Rev.Online, 13: 8–9. Carriquiry, M (). U.S. Biodiesel production: Recent developments and prospects. Iowa Agric. Rev.Online, 13: 8–9.
64.
go back to reference Davey, HM and Kell DB (1996). Flow cytometry and cell sorting of heterogeneous microbial populations: The importance of single-cell analyses. Microbiol. Rev., 60: 641–696. Davey, HM and Kell DB (1996). Flow cytometry and cell sorting of heterogeneous microbial populations: The importance of single-cell analyses. Microbiol. Rev., 60: 641–696.
65.
go back to reference Reckermann, M (2000). Flow sorting in aquatic ecology. Sci. Mar., 64: 235–246.CrossRef Reckermann, M (2000). Flow sorting in aquatic ecology. Sci. Mar., 64: 235–246.CrossRef
66.
go back to reference Dinh, LTT et al (2009). Sustainability evaluation of biodiesel production using multicriteria decision-making. Environ. Prog. Sustain. Energy, 28: 38–46.CrossRef Dinh, LTT et al (2009). Sustainability evaluation of biodiesel production using multicriteria decision-making. Environ. Prog. Sustain. Energy, 28: 38–46.CrossRef
67.
go back to reference Chisti, Y (2007). Biodiesel from microalgae. Biotechnol. Adv., 25: 294–306.CrossRef Chisti, Y (2007). Biodiesel from microalgae. Biotechnol. Adv., 25: 294–306.CrossRef
68.
go back to reference Rismani-Yazdi, H et al (2011). Transcriptome sequencing and annotation of the microalgae Dunaliella tertiolecta: Pathway description and gene discovery for production of next-generation biofuels. BMC Genomics, 12: 148.CrossRef Rismani-Yazdi, H et al (2011). Transcriptome sequencing and annotation of the microalgae Dunaliella tertiolecta: Pathway description and gene discovery for production of next-generation biofuels. BMC Genomics, 12: 148.CrossRef
69.
go back to reference Sheehan, J (1998). A look back at the US Department of Energy’s aquatic species program—Biodiesel from algae. Prepared for the US Department of Energy, The National Renewable Energy Laboratory (NREL) [R]. NREL/TP-580-24190. Sheehan, J (1998). A look back at the US Department of Energy’s aquatic species program—Biodiesel from algae. Prepared for the US Department of Energy, The National Renewable Energy Laboratory (NREL) [R]. NREL/TP-580-24190.
70.
go back to reference Carioca, JOB et al (2009). The hard choice for alternative biofuels to diesel in Brazil. BiotechnolAdv, 27(6): 1043–1050. Carioca, JOB et al (2009). The hard choice for alternative biofuels to diesel in Brazil. BiotechnolAdv, 27(6): 1043–1050.
71.
go back to reference Vijayarghavank, K et al (2009). Biodiesel production from freshwater algae. Energy Fuels, 23: 5448–5453.CrossRef Vijayarghavank, K et al (2009). Biodiesel production from freshwater algae. Energy Fuels, 23: 5448–5453.CrossRef
72.
go back to reference Rodolfil et al (2009). Microalgae for oil: Strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnology and Bioengineering, 102(1): 100–112.CrossRef Rodolfil et al (2009). Microalgae for oil: Strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnology and Bioengineering, 102(1): 100–112.CrossRef
73.
go back to reference Blackburn, SL et al (2009). Australian strain selection and enhancement for biodiesel from algae. Phycologia, 48(4): 8–9. Blackburn, SL et al (2009). Australian strain selection and enhancement for biodiesel from algae. Phycologia, 48(4): 8–9.
74.
go back to reference Neofotis, P et al (2016) Characterization and classification of highly productive microalgae strains discovered for biofuel and bioproduct generation. Algal Research, 15: 164–178.CrossRef Neofotis, P et al (2016) Characterization and classification of highly productive microalgae strains discovered for biofuel and bioproduct generation. Algal Research, 15: 164–178.CrossRef
75.
go back to reference Slocombe, SP et al (2015). Unlocking nature’s treasure-chest: Screening for oleaginous algae. Sci Rep., 5: 9844.CrossRef Slocombe, SP et al (2015). Unlocking nature’s treasure-chest: Screening for oleaginous algae. Sci Rep., 5: 9844.CrossRef
76.
go back to reference Mata, TM (2010). Microalgae for biodiesel production and other applications: A review. Renew. Sustain. Energy Rev., 14: 217–232.CrossRef Mata, TM (2010). Microalgae for biodiesel production and other applications: A review. Renew. Sustain. Energy Rev., 14: 217–232.CrossRef
77.
go back to reference http://www.csiro.au/ (2012). CSIRO. Australian national algae culture collection Organisation-Structure/National-Facilities/Australian-National-Algae-Culture-Collection.aspx http://​www.​csiro.​au/​ (2012). CSIRO. Australian national algae culture collection Organisation-Structure/National-Facilities/Australian-National-Algae-Culture-Collection.aspx
78.
go back to reference Andrade, MR and Costa, JAV (2007). Mixotrophic cultivation of microalga Spirulina platensis using molasses as organic substrate. Aquaculture, 264: 130–134.CrossRef Andrade, MR and Costa, JAV (2007). Mixotrophic cultivation of microalga Spirulina platensis using molasses as organic substrate. Aquaculture, 264: 130–134.CrossRef
79.
go back to reference Barclay, W and Apt, K (2013). Strategies for bioprospecting microalgae for potential commercial applications. In: Richmond, A and Hu, Q (eds), Handbook of microalgal culture: Applied phycology and biotechnology, 2nd edn. Wiley-Blackwell, Chichester.CrossRef Barclay, W and Apt, K (2013). Strategies for bioprospecting microalgae for potential commercial applications. In: Richmond, A and Hu, Q (eds), Handbook of microalgal culture: Applied phycology and biotechnology, 2nd edn. Wiley-Blackwell, Chichester.CrossRef
80.
go back to reference Barclay, W et al (2013). Commercial production of microalgae via fermentation. In: Richmond, A and Hu, Q (eds), Handbook of microalgal culture: Applied phycology and biotechnology, 2nd edn. Wiley-Blackwell, Chichester. Barclay, W et al (2013). Commercial production of microalgae via fermentation. In: Richmond, A and Hu, Q (eds), Handbook of microalgal culture: Applied phycology and biotechnology, 2nd edn. Wiley-Blackwell, Chichester.
81.
go back to reference Bassi, A et al (2014). Mixotrophic algae cultivation for energy production and other applications. In: Bajpai, R, Prokop, A and Zappi, M (eds), Algal biorefineries, Vol. 1. Cultivation of cells and products. Springer, New York. Bassi, A et al (2014). Mixotrophic algae cultivation for energy production and other applications. In: Bajpai, R, Prokop, A and Zappi, M (eds), Algal biorefineries, Vol. 1. Cultivation of cells and products. Springer, New York.
82.
go back to reference Cheirsilp, B and Torpee, S (2012). Enhanced growth and lipid production of microalgae under mixotrophic culture condition: Effect of light intensity, glucose concentration and fed-batch cultivation. Bioresour Technol, 110: 510–516.CrossRef Cheirsilp, B and Torpee, S (2012). Enhanced growth and lipid production of microalgae under mixotrophic culture condition: Effect of light intensity, glucose concentration and fed-batch cultivation. Bioresour Technol, 110: 510–516.CrossRef
83.
go back to reference Espinosa-Gonzalez, I et al (2014). Heterotrophic growth and lipid accumulation of Chlorella protothecoides in whey permeate, a dairy by-product stream, for biofuel production. Bioresour Technol, 155: 170–176.CrossRef Espinosa-Gonzalez, I et al (2014). Heterotrophic growth and lipid accumulation of Chlorella protothecoides in whey permeate, a dairy by-product stream, for biofuel production. Bioresour Technol, 155: 170–176.CrossRef
84.
go back to reference Wang, J et al (2014). Mixotrophic cultivation of microalgae for biodiesel production: Status and prospects. Appl Biochem Biotechnol, 172: 3307–3329.CrossRef Wang, J et al (2014). Mixotrophic cultivation of microalgae for biodiesel production: Status and prospects. Appl Biochem Biotechnol, 172: 3307–3329.CrossRef
85.
go back to reference Wijffels, RH et al (2010). Microalgae for the production of bulk chemicals and biofuels. Biofuels Bioprod Biorefin, 4: 287–295.CrossRef Wijffels, RH et al (2010). Microalgae for the production of bulk chemicals and biofuels. Biofuels Bioprod Biorefin, 4: 287–295.CrossRef
Metadata
Title
Diesel-Like Biofuels
Authors
Basanta Kumara Behera
Ajit Varma
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-319-96538-3_3