Skip to main content
Top

Hint

Swipe to navigate through the articles of this issue

Published in: Cognitive Neurodynamics 1/2023

20-04-2022 | Research Article

Different eigenvalue distributions encode the same temporal tasks in recurrent neural networks

Author: Cecilia Jarne

Published in: Cognitive Neurodynamics | Issue 1/2023

Login to get access

Abstract

Different brain areas, such as the cortex and, more specifically, the prefrontal cortex, show great recurrence in their connections, even in early sensory areas. Several approaches and methods based on trained networks have been proposed to model and describe these regions. It is essential to understand the dynamics behind the models because they are used to build different hypotheses about the functioning of brain areas and to explain experimental results. The main contribution here is the description of the dynamics through the classification and interpretation carried out with a set of numerical simulations. This study sheds light on the multiplicity of solutions obtained for the same tasks and shows the link between the spectra of linearized trained networks and the dynamics of the counterparts. The patterns in the distribution of the eigenvalues of the recurrent weight matrix were studied and properly related to the dynamics in each task.

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe



 


Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Appendix
Available only for authorised users
Literature
go back to reference Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, Corrado G.S, Davis A, Dean J, Devin M, Ghemawat S, Goodfellow I, Harp A, Irving G, Isard M, Jia Y, Jozefowicz R, Kaiser L, Kudlur M, Levenberg J, Mané D, Monga R, Moore S, Murray D, Olah C, Schuster M, Shlens J, Steiner B, Sutskever I, .alwar K, Tucker P, Vanhoucke V, Vasudevan V, Viégas F, Vinyals O, Warden P, Wattenberg M, Wicke M, Yu Y, Zheng X (2015) TensorFlow: large-scale machine learning on heterogeneous systems. Software available from https://​www.​tensorflow.​org/​ Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, Corrado G.S, Davis A, Dean J, Devin M, Ghemawat S, Goodfellow I, Harp A, Irving G, Isard M, Jia Y, Jozefowicz R, Kaiser L, Kudlur M, Levenberg J, Mané D, Monga R, Moore S, Murray D, Olah C, Schuster M, Shlens J, Steiner B, Sutskever I, .alwar K, Tucker P, Vanhoucke V, Vasudevan V, Viégas F, Vinyals O, Warden P, Wattenberg M, Wicke M, Yu Y, Zheng X (2015) TensorFlow: large-scale machine learning on heterogeneous systems. Software available from https://​www.​tensorflow.​org/​
go back to reference Bagur S, Averseng M, Elgueda D, David S, Fritz J, Yin P, Shamma S, Boubenec Y, Ostojic S (2018) Go/No-Go task engagement enhances population representation of target stimuli in primary auditory cortex. Nat Commun 9(1):2529 Bagur S, Averseng M, Elgueda D, David S, Fritz J, Yin P, Shamma S, Boubenec Y, Ostojic S (2018) Go/No-Go task engagement enhances population representation of target stimuli in primary auditory cortex. Nat Commun 9(1):2529
go back to reference Bengio Y, Simard P, Frasconi P (1994) Learning long-term dependencies with gradient descent is difficult. IEEE Trans Neural Netw 5(2):157 CrossRef Bengio Y, Simard P, Frasconi P (1994) Learning long-term dependencies with gradient descent is difficult. IEEE Trans Neural Netw 5(2):157 CrossRef
go back to reference Chollet F, et al (2015) Keras. \(https://keras.io\) Chollet F, et al (2015) Keras. \(https://keras.io\)
go back to reference Chung J, Gulcehre C, Cho K, Bengio Y (2014) Empirical evaluation of gated recurrent neural networks on sequence modeling. In: NIPS 2014 Workshop on Deep Learning, Dec 2014 Chung J, Gulcehre C, Cho K, Bengio Y (2014) Empirical evaluation of gated recurrent neural networks on sequence modeling. In: NIPS 2014 Workshop on Deep Learning, Dec 2014
go back to reference Dayan P, Abbott LF (2005) Theoretical neuroscience: computational and mathematical modeling of neural systems. The MIT Press Dayan P, Abbott LF (2005) Theoretical neuroscience: computational and mathematical modeling of neural systems. The MIT Press
go back to reference Maheswaranathan N, Williams A, Golub M, Ganguli S, Sussillo D (2019a) Universality and individuality in neural dynamics across large populations of recurrent networks. In: Wallach H, Larochelle H, Beygelzimer A, Fox E, Garnett R (eds) Advances in neural information processing systems 32. Curran Associates Inc, Red Hook, pp 15629–15641 Maheswaranathan N, Williams A, Golub M, Ganguli S, Sussillo D (2019a) Universality and individuality in neural dynamics across large populations of recurrent networks. In: Wallach H, Larochelle H, Beygelzimer A, Fox E, Garnett R (eds) Advances in neural information processing systems 32. Curran Associates Inc, Red Hook, pp 15629–15641
go back to reference Pascanu R, Mikolov T, Bengio Y(2013) On the difficulty of training Recurrent Neural Networks. In: ICML’13: JMLR: W&CP vol 28 Pascanu R, Mikolov T, Bengio Y(2013) On the difficulty of training Recurrent Neural Networks. In: ICML’13: JMLR: W&CP vol 28
go back to reference Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay E (2011) Scikit-learn: machine learning in python. J Mach Learn Res 12:2825 Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay E (2011) Scikit-learn: machine learning in python. J Mach Learn Res 12:2825
go back to reference Salatiello A, Giese MA (2020) Recurrent neural network learning of performance and intrinsic population dynamics from sparse neural data. In: Farkaš I, Masulli P, Wermter S (eds) Artificial neural networks and machine learning - ICANN 2020. Springer International Publishing, Cham, pp 874–886 CrossRef Salatiello A, Giese MA (2020) Recurrent neural network learning of performance and intrinsic population dynamics from sparse neural data. In: Farkaš I, Masulli P, Wermter S (eds) Artificial neural networks and machine learning - ICANN 2020. Springer International Publishing, Cham, pp 874–886 CrossRef
go back to reference Sengupta B, Friston K.J(2018) How Robust are Deep Neural Networks?. How robust are deep neural networks? Sengupta B, Friston K.J(2018) How Robust are Deep Neural Networks?. How robust are deep neural networks?
go back to reference Shi X, Chen Z, Wang H, Yeung DY, Wong WK, WOO W.C, (2015) Convolutional LSTM network: a machine learning approach for precipitation nowcasting. In: Cortes C, Lawrence ND, Lee DD, Sugiyama M, Garnett R (eds) Advances in neural information processing systems 28. Curran Associates Inc, Red Hook, pp 802–810 Shi X, Chen Z, Wang H, Yeung DY, Wong WK, WOO W.C, (2015) Convolutional LSTM network: a machine learning approach for precipitation nowcasting. In: Cortes C, Lawrence ND, Lee DD, Sugiyama M, Garnett R (eds) Advances in neural information processing systems 28. Curran Associates Inc, Red Hook, pp 802–810
Metadata
Title
Different eigenvalue distributions encode the same temporal tasks in recurrent neural networks
Author
Cecilia Jarne
Publication date
20-04-2022
Publisher
Springer Netherlands
Published in
Cognitive Neurodynamics / Issue 1/2023
Print ISSN: 1871-4080
Electronic ISSN: 1871-4099
DOI
https://doi.org/10.1007/s11571-022-09802-5

Other articles of this Issue 1/2023

Cognitive Neurodynamics 1/2023 Go to the issue