Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

19-12-2019 | Methodologies and Application | Issue 15/2020

Soft Computing 15/2020

Differential evolutionary algorithm with an evolutionary state estimation method and a two-level selection mechanism

Journal:
Soft Computing > Issue 15/2020
Authors:
Yang Li, Genghui Li
Important notes
Communicated by V. Loia.

Electronic supplementary material

The online version of this article (https://​doi.​org/​10.​1007/​s00500-019-04621-z) contains supplementary material, which is available to authorized users.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

The efficiency and effectiveness of differential evolution (DE) greatly depend on the mutation operator due to the principle that different mutation operators are beneficial to different evolutionary states. However, it is not easy to automatically and effectively identify the evolutionary state. In this paper, we propose an evolutionary state estimation method (ESE) based on the correlation coefficient between the population’s distributions in objective space (Δf) and solution space (Δx). To be specific, Δf consists of the distances between each individual and the current best individual based on their objective function values, while Δx includes the Euclidean distances between each individual and the current best individual based on their positions in the search space. Based on the correlation coefficient between Δx and Δf, the entire evolutionary process is classified into three kinds of state. At each generation, the evolutionary state is firstly determined according to the correlation coefficient, subsequently adaptively choosing a mutation operator from the corresponding candidate operator pool for each individual to generate its mutation vector. Moreover, a two-level selection mechanism (TLSM) is presented to get away from stagnation. The algorithm combines DE with ESE and TLSM (DEET for short) is proposed. Experimental results on twenty frequently used benchmark functions and the CEC2017 test problems show that DEET exhibits very competitive performance compared with other state-of-the-art DE variants.

Please log in to get access to this content

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Supplementary Material
Available only for authorised users
Literature
About this article

Other articles of this Issue 15/2020

Soft Computing 15/2020 Go to the issue

Premium Partner

    Image Credits