Skip to main content
Top

2021 | OriginalPaper | Chapter

2. Differential Expression Analysis of RNA-Seq Data and Co-expression Networks

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

At present, RNA-seq has become the most common and powerful platform in the study of transcriptomes. A major goal of RNA-seq analysis is the identification of genes and molecular pathways which are differentially expressed in two altered situations. Such difference in expression profiles might be linked with changes in biology giving an indication for further intense investigation. Generally, the traditional statistical methods used in the study of differential expression analysis of gene profiles are restricted to individual genes and do not provide any information regarding interactivities of genes contributing to a certain biological system. This need led the scientists to develop new computational methods to identify such interactions of genes. The most common approach used to study gene-set interactivities is gene network inference. Co-expression gene networks are the correlation-based networks which are commonly used to identify the set of genes significantly involved in the occurrence or presence of a particular biological process. This chapter describes a basic procedure of an RNA-seq analysis along with a brief description about the techniques used in the analysis: an illustration on a real data set is also shown. In addition, a basic pipeline is presented to elucidate how to construct a co-expression network and detect modules from the RNA-seq data.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
4.
go back to reference Zewail AH (2008) Physical biology: from atoms to medicine. Imperial college press Zewail AH (2008) Physical biology: from atoms to medicine. Imperial college press
7.
go back to reference Zhao S et al (2014) Comparison of RNA-seq and microarray in transcriptome profiling of activated T cells. PloS one. Public Library of Science, 9(1): e78644 Zhao S et al (2014) Comparison of RNA-seq and microarray in transcriptome profiling of activated T cells. PloS one. Public Library of Science, 9(1): e78644
11.
19.
go back to reference Lund SP et al (2012) Detecting differential expression in RNA-sequence data using quasi-likelihood with shrunken dispersion estimates. Stat Appl Genet Mol Biol. De Gruyter, 11(5) Lund SP et al (2012) Detecting differential expression in RNA-sequence data using quasi-likelihood with shrunken dispersion estimates. Stat Appl Genet Mol Biol. De Gruyter, 11(5)
20.
21.
go back to reference Phipson B et al (2013) Empirical Bayes in the presence of exceptional cases, with application to microarray data. Phytochemistry 26(8):2247–2250 Phipson B et al (2013) Empirical Bayes in the presence of exceptional cases, with application to microarray data. Phytochemistry 26(8):2247–2250
22.
go back to reference Smyth GK (2004) Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol. De Gruyter, 3(1) Smyth GK (2004) Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol. De Gruyter, 3(1)
29.
go back to reference Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Roy Stat Soc: Ser B (Methodological). Wiley Online Library, 57(1): 289–300 Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Roy Stat Soc: Ser B (Methodological). Wiley Online Library, 57(1): 289–300
31.
go back to reference Wu D et al (2010) ROAST: rotation gene set tests for complex microarray experiments. Bioinformatics. Oxford University Press, 26(17): 2176–2182 Wu D et al (2010) ROAST: rotation gene set tests for complex microarray experiments. Bioinformatics. Oxford University Press, 26(17): 2176–2182
32.
go back to reference Cho K-H et al (2007) Reverse engineering of gene regulatory networks. IET Syst Biol. IET 1(3):149–163CrossRef Cho K-H et al (2007) Reverse engineering of gene regulatory networks. IET Syst Biol. IET 1(3):149–163CrossRef
33.
go back to reference Csete ME, Doyle JC (2002) Reverse engineering of biological complexity. Science. American Association for the Advancement of Science, 295(5560): 1664–1669 Csete ME, Doyle JC (2002) Reverse engineering of biological complexity. Science. American Association for the Advancement of Science, 295(5560): 1664–1669
34.
go back to reference Kitano H (2000) Perspectives on systems biology. New Gener Comput. Springer, 18(3): 199–216 Kitano H (2000) Perspectives on systems biology. New Gener Comput. Springer, 18(3): 199–216
45.
go back to reference Bühlmann P, Van De Geer S (2011) Statistics for high-dimensional data: methods, theory and applications. Springer Science & Business Media Bühlmann P, Van De Geer S (2011) Statistics for high-dimensional data: methods, theory and applications. Springer Science & Business Media
46.
go back to reference Dong J, Horvath S (2007) Understanding network concepts in modules. BMC Syst Biol. Springer 1(1):24CrossRef Dong J, Horvath S (2007) Understanding network concepts in modules. BMC Syst Biol. Springer 1(1):24CrossRef
47.
go back to reference Horvath S, Dong J (2008) Geometric interpretation of gene coexpression network analysis. PLoS Comput Biol. Public Library of Science, 4(8): e1000117 Horvath S, Dong J (2008) Geometric interpretation of gene coexpression network analysis. PLoS Comput Biol. Public Library of Science, 4(8): e1000117
50.
go back to reference Meinshausen N, Bühlmann P (2006) High-dimensional graphs and variable selection with the lasso. The Ann Stat. Institute of Mathematical Statistics, 34(3): 1436–1462 Meinshausen N, Bühlmann P (2006) High-dimensional graphs and variable selection with the lasso. The Ann Stat. Institute of Mathematical Statistics, 34(3): 1436–1462
51.
go back to reference Friedman J, Hastie T, Tibshirani R (2008) Sparse inverse covariance estimation with the graphical lasso. Biostatistics. Oxford University Press, 9(3): 432–441 Friedman J, Hastie T, Tibshirani R (2008) Sparse inverse covariance estimation with the graphical lasso. Biostatistics. Oxford University Press, 9(3): 432–441
52.
go back to reference Zou H (2006) The adaptive lasso and its oracle properties. J Am Stat Assoc. Taylor & Francis, 101(476): 1418–1429 Zou H (2006) The adaptive lasso and its oracle properties. J Am Stat Assoc. Taylor & Francis, 101(476): 1418–1429
53.
go back to reference Bien J, Tibshirani RJ (2011) Sparse estimation of a covariance matrix. Biometrika. Oxford University Press, 98(4): 807–820 Bien J, Tibshirani RJ (2011) Sparse estimation of a covariance matrix. Biometrika. Oxford University Press, 98(4): 807–820
55.
go back to reference Zhang B, Horvath S (2005) A general framework for weighted gene co-expression network analysis. Stat Appl Genet Mol Biol. De Gruyter, 4(1) Zhang B, Horvath S (2005) A general framework for weighted gene co-expression network analysis. Stat Appl Genet Mol Biol. De Gruyter, 4(1)
56.
go back to reference Li A, Horvath S (2007) Network neighborhood analysis with the multi-node topological overlap measure. Bioinformatics. Oxford University Press, 23(2): 222–231 Li A, Horvath S (2007) Network neighborhood analysis with the multi-node topological overlap measure. Bioinformatics. Oxford University Press, 23(2): 222–231
58.
go back to reference Yip AM, Horvath S (2007) Gene network interconnectedness and the generalized topological overlap measure. BMC Bioinform. BioMed Central 8(1): 22 Yip AM, Horvath S (2007) Gene network interconnectedness and the generalized topological overlap measure. BMC Bioinform. BioMed Central 8(1): 22
Metadata
Title
Differential Expression Analysis of RNA-Seq Data and Co-expression Networks
Author
Sana Javed
Copyright Year
2021
DOI
https://doi.org/10.1007/978-3-030-69951-2_2

Premium Partner