Skip to main content
Top

2020 | OriginalPaper | Chapter

Diffusion Measurements of CO2 Within Carbon Anodes for Aluminium Smelting

Authors : Epma Putri, Geoffrey Brooks, Graeme A. Snook, Lorentz Petter Lossius, Ingo Eick

Published in: Light Metals 2020

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A study of the CO/CO2 diffusion coefficients within the carbon anode and cryolite was carried out. Gas diffusion experiments were conducted to measure the diffusion coefficient of CO2 in conjunction with anode characterization using Mercury Intrusion Porosimetry (MIP). The diffusion coefficient value obtained varied from 1.38 × 10−6 m2/s to 7.89 × 10−6 m2/s in the temperature range from 25 to 960 °C. In addition, the diffusion coefficient of CO2 in cryolite at 960 °C was predicted to be 2.74 × 10−9 m2/s. Two verification studies were attempted to measure the diffusion coefficient in cryolite, but no reliable results were obtained. The results from this study suggest the gas transport for bubble growth is controlled by gas flow in the anode due to slower diffusion coefficient value in cryolite which is three orders of magnitude lower when gas diffusion coefficient for CO2 through the anode samples.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Tarcy, GP, Kvande, H, Tabereaux, A (2011) Advancing the Industrial Aluminum Process: 20th Century Breakthrough Inventions and Developments. JOM, 63, 101–108. Tarcy, GP, Kvande, H, Tabereaux, A (2011) Advancing the Industrial Aluminum Process: 20th Century Breakthrough Inventions and Developments. JOM, 63, 101–108.
2.
go back to reference Segatz M, Hop J, Reny, P, Gikling (2016) H. Hydro’s Cell Technology Path towards Specific Energy Consumption below 12 kWh/kg. Light Metals 2016: 301–305. Segatz M, Hop J, Reny, P, Gikling (2016) H. Hydro’s Cell Technology Path towards Specific Energy Consumption below 12 kWh/kg. Light Metals 2016: 301–305.
3.
go back to reference Cooksey, MA, Taylor, MP, Chen, JJ (2008) Resistance due to Gas Bubbles in Aluminum Reduction Cells. JOM 60, 51–57. Cooksey, MA, Taylor, MP, Chen, JJ (2008) Resistance due to Gas Bubbles in Aluminum Reduction Cells. JOM 60, 51–57.
4.
go back to reference Alam, M, Morsi Y, Yang W, Brooks G, Chen J. (2013) Investigation of Electrolytic Bubble Behaviour in Aluminium Smelting Cell. Light Metals 2013, 591. Alam, M, Morsi Y, Yang W, Brooks G, Chen J. (2013) Investigation of Electrolytic Bubble Behaviour in Aluminium Smelting Cell. Light Metals 2013, 591.
5.
go back to reference Zoric, J, Solheim A (2000) On Gas Bubbles in Industrial Aluminium Cells with Prebaked Anodes and Their Influence on the Current Distribution. Journal of applied electrochemistry, 30: 787. Zoric, J, Solheim A (2000) On Gas Bubbles in Industrial Aluminium Cells with Prebaked Anodes and Their Influence on the Current Distribution. Journal of applied electrochemistry, 30: 787.
6.
go back to reference Einarsrud KE, Johansen, ST, Eick I (2012) Anodic Bubble Behavior in Hall-Héroult Cells. Light Metals 2012: 875–879. Einarsrud KE, Johansen, ST, Eick I (2012) Anodic Bubble Behavior in Hall-Héroult Cells. Light Metals 2012: 875–879.
7.
go back to reference Haupin, W, Kvande, H (2000) Thermodynamics of Electrochemical Reduction of Alumina. n Light Metals: Aluminum Reduction Technology, Volume 2, 160–167. Haupin, W, Kvande, H (2000) Thermodynamics of Electrochemical Reduction of Alumina. n Light Metals: Aluminum Reduction Technology, Volume 2, 160–167.
8.
go back to reference Poncsák, S, Kiss, LI (2018) Role of the Porosity of Carbon Anodes in the Nucleation and Growth of Gas Bubbles. Light Metals 2018, 1261–1265. Poncsák, S, Kiss, LI (2018) Role of the Porosity of Carbon Anodes in the Nucleation and Growth of Gas Bubbles. Light Metals 2018, 1261–1265.
9.
go back to reference Putri E, Brooks G, Snook, GA, Rørvik, S, Lossius, LP, Eick I (2018) Understanding the Anode Porosity as a Means for Improved Aluminium Smelting. Light Metals 2018, 1235–1242. Putri E, Brooks G, Snook, GA, Rørvik, S, Lossius, LP, Eick I (2018) Understanding the Anode Porosity as a Means for Improved Aluminium Smelting. Light Metals 2018, 1235–1242.
10.
go back to reference Putri, E, Brooks G, Snook, GA, Eick, I, Lossius LP (2019) Diffusion and Flow of CO2 in Carbon Anode for Aluminium Smelting. Metallurgical and Materials Transactions B, 50, 846. Putri, E, Brooks G, Snook, GA, Eick, I, Lossius LP (2019) Diffusion and Flow of CO2 in Carbon Anode for Aluminium Smelting. Metallurgical and Materials Transactions B, 50, 846.
11.
go back to reference Golovina E. (1952) The Question of the Gas Diffusion in the Carbon. Doklady Akademii Nauk CCCR, 141–145. Golovina E. (1952) The Question of the Gas Diffusion in the Carbon. Doklady Akademii Nauk CCCR, 141–145.
12.
go back to reference Poling BE, Prausnitz, JM, O’connell, JP; (2001). The Properties of Gases and Liquids; Mcgraw-hill New York, Vol. 5. Poling BE, Prausnitz, JM, O’connell, JP; (2001). The Properties of Gases and Liquids; Mcgraw-hill New York, Vol. 5.
13.
go back to reference Sutherland, W (1902). Ionization, Ionic Velocities, and Atomic Sizes. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 3, 161. Sutherland, W (1902). Ionization, Ionic Velocities, and Atomic Sizes. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 3, 161.
14.
go back to reference Glasstone, S, Laidler, KJ, Eyring, H. (1941) The Theory of Rate Processes; the Kinetics of Chemical Reactions, Viscosity, Diffusion and Electrochemical Phenomena. Glasstone, S, Laidler, KJ, Eyring, H. (1941) The Theory of Rate Processes; the Kinetics of Chemical Reactions, Viscosity, Diffusion and Electrochemical Phenomena.
15.
go back to reference Sada, E, Katoh S, Yoshii H, Yasuda K (1980) Diffusivity of Carbon Dioxide in Molten Salts. Journal of Chemical and Engineering Data, 25, 341. Sada, E, Katoh S, Yoshii H, Yasuda K (1980) Diffusivity of Carbon Dioxide in Molten Salts. Journal of Chemical and Engineering Data, 25, 341.
16.
go back to reference Poncsák, S, Kiss, LI (2012) Mechanism of Transport between the Anode-Bath Interface and the Active Bubble Generating Sites in Hall-Héroult Cells. Light Metals 2012, 773. Poncsák, S, Kiss, LI (2012) Mechanism of Transport between the Anode-Bath Interface and the Active Bubble Generating Sites in Hall-Héroult Cells. Light Metals 2012, 773.
17.
go back to reference Vetyukov, MM and Acquah, F. (1971), Elektrokhimiya vol. 7, p. 557. Vetyukov, MM and Acquah, F. (1971), Elektrokhimiya vol. 7, p. 557.
18.
go back to reference Janz, GJ, Bansal N (1982). Molten Salts Data: Diffusion Coefficients in Single and Multi-Component Salt Systems. Journal of Physical and Chemical Reference Data, 11, 505. Janz, GJ, Bansal N (1982). Molten Salts Data: Diffusion Coefficients in Single and Multi-Component Salt Systems. Journal of Physical and Chemical Reference Data, 11, 505.
19.
go back to reference Moya C, Palomar J, Gonzalez-Miquel M, Bedia J, Rodriguez, F. (2014) Diffusion Coefficients of CO2 in Ionic Liquids Estimated by Gravimetry. Industrial & Engineering Chemistry Research, 53, 13782–13785. Moya C, Palomar J, Gonzalez-Miquel M, Bedia J, Rodriguez, F. (2014) Diffusion Coefficients of CO2 in Ionic Liquids Estimated by Gravimetry. Industrial & Engineering Chemistry Research, 53, 13782–13785.
20.
go back to reference Gonzalez-Miquel M, Bedia, J, Abrusci, C, Palomar, J, Rodriguez, F(2013) Anion Effects on Kinetics and Thermodynamics of CO2 Absorption in Ionic Liquids. The Journal of Physical Chemistry B, 117, 3398. Gonzalez-Miquel M, Bedia, J, Abrusci, C, Palomar, J, Rodriguez, F(2013) Anion Effects on Kinetics and Thermodynamics of CO2 Absorption in Ionic Liquids. The Journal of Physical Chemistry B, 117, 3398.
21.
go back to reference Sada, E, Katoh, S, Yoshii, H, Yasuda K. (1982) Rates of Gas Absorption into Molten Salts. Industrial & Engineering Chemistry Fundamentals, 21, 43–46. Sada, E, Katoh, S, Yoshii, H, Yasuda K. (1982) Rates of Gas Absorption into Molten Salts. Industrial & Engineering Chemistry Fundamentals, 21, 43–46.
22.
go back to reference Katoh, S, Sada, E. (1980) Rates of Mass Transfer in Affinity Chromatography. Journal of Chemical Engineering of Japan, 13, 151–154. Katoh, S, Sada, E. (1980) Rates of Mass Transfer in Affinity Chromatography. Journal of Chemical Engineering of Japan, 13, 151–154.
Metadata
Title
Diffusion Measurements of CO2 Within Carbon Anodes for Aluminium Smelting
Authors
Epma Putri
Geoffrey Brooks
Graeme A. Snook
Lorentz Petter Lossius
Ingo Eick
Copyright Year
2020
DOI
https://doi.org/10.1007/978-3-030-36408-3_162

Premium Partners