Skip to main content
Top

2021 | OriginalPaper | Chapter

10. Digitalisierungspotenziale der Instandhaltung 4.0 – Von der Aufbereitung binärer Daten zum Einsatz transparenter künstlicher Intelligenz

Authors : Jonas Wanner, Lukas-Valentin Herm, Christian Janiesch

Published in: IoT – Best Practices

Publisher: Springer Fachmedien Wiesbaden

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Zusammenfassung

Ein Kernbereich der von digitalen Informationen entscheidend profitieren kann ist die Instandhaltung von Maschinen. Sie dient der Gewährleistung eines reibungslosen Fertigungsablaufs. Mithilfe von Verfahren der Datenanalyse sollen hierfür künftig Maschinenzustandsdaten ausgewertet werden. Fraglich bleibt die aktuelle Beschaffenheit von Fertigungsanlagen im deutschen, produzierenden Mittelstand. Wie eine Umfrage zeigt, stammen Zustandsdaten noch immer überwiegend von Lichtschranken, Positionierungstastern und Motorspannungen. Binäre Datenwerte erschweren datenbasierte Auswertungsverfahren jedoch. Der Beitrag nimmt sich der Problemstellung an. Gemeinsam mit Partnern aus der Industrie wurde ein schrittweiser Entwicklungsansatz erarbeitet, wie trotz dieser Datenrestriktion eine umfassende Unterstützung möglich wird. Die Umsetzung basiert auf Techniken aus den Bereichen Process Mining und erklärbare künstliche Intelligenz. Ein Demonstrator evaluiert die Praxistauglichkeit.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
go back to reference van der Aalst W, Adriansyah A, De Medeiros AKA, Arcieri F, Baier T, Blickle T, Bose JC, Van Den Brand P, Brandtjen R, Buijs J (2011) Process mining manifesto. In: International conference on business process management. Berlin/Heidelberg, S 169–194 van der Aalst W, Adriansyah A, De Medeiros AKA, Arcieri F, Baier T, Blickle T, Bose JC, Van Den Brand P, Brandtjen R, Buijs J (2011) Process mining manifesto. In: International conference on business process management. Berlin/Heidelberg, S 169–194
go back to reference Andaloussi AA, Burattin A, Weber B (2018) Toward an automated labeling of event log attributes. Enterprise, business-process and information systems modeling. Springer, Cham, S 82–96 Andaloussi AA, Burattin A, Weber B (2018) Toward an automated labeling of event log attributes. Enterprise, business-process and information systems modeling. Springer, Cham, S 82–96
go back to reference Bayomie D, Helal IM, Awad A, Ezat E, ElBastawissi A (2016) Deducing case IDs for unlabeled event logs. In: Reichert M, Reijers HA (Hrsg) BPM 2015, Bd 256. Springer, Cham, S 242–254 Bayomie D, Helal IM, Awad A, Ezat E, ElBastawissi A (2016) Deducing case IDs for unlabeled event logs. In: Reichert M, Reijers HA (Hrsg) BPM 2015, Bd 256. Springer, Cham, S 242–254
go back to reference Bose RJC, Mans RS, van der Aalst WM (2013) Wanna improve process mining results? 2013 IEEE symposium on computational intelligence and data mining (CIDM). Singapore, S 127–134 Bose RJC, Mans RS, van der Aalst WM (2013) Wanna improve process mining results? 2013 IEEE symposium on computational intelligence and data mining (CIDM). Singapore, S 127–134
go back to reference Dam HK, Tran T, Ghose A (2018) Explainable software analytics. In: Proceedings of the 40th international conference on software engineering: new ideas and emerging results. Gothenburg, S 53–56 Dam HK, Tran T, Ghose A (2018) Explainable software analytics. In: Proceedings of the 40th international conference on software engineering: new ideas and emerging results. Gothenburg, S 53–56
go back to reference Delen D (2015) Real-world data mining: applied business analytics and decision making. Pearson Eduction, Upper Saddle River Delen D (2015) Real-world data mining: applied business analytics and decision making. Pearson Eduction, Upper Saddle River
go back to reference Delen D, Demirkan H (2013) Data, information and analytics as services. Decis Support Syst 55:359–363CrossRef Delen D, Demirkan H (2013) Data, information and analytics as services. Decis Support Syst 55:359–363CrossRef
go back to reference DIN (2003) DIN 31051:2003-06: Grundlagen der Instandhaltung. DIN Deutsches Institut für Normung e.V., Berlin DIN (2003) DIN 31051:2003-06: Grundlagen der Instandhaltung. DIN Deutsches Institut für Normung e.V., Berlin
go back to reference Ferreira D, Zacarias M, Malheiros M, Ferreira P (2007) Approaching process mining with sequence clustering: experiments and findings. In: Alonso G, Dadam P, Rosemann M (Hrsg) BPM 2007, Bd 4714. Springer, Heidelberg, S 360–374 Ferreira D, Zacarias M, Malheiros M, Ferreira P (2007) Approaching process mining with sequence clustering: experiments and findings. In: Alonso G, Dadam P, Rosemann M (Hrsg) BPM 2007, Bd 4714. Springer, Heidelberg, S 360–374
go back to reference Ferreira DR, Gillblad D (2009) Discovering process models from unlabelled event logs. In: Dayal U, Eder J, Koehler J, Reijers HA (Hrsg) BPM 2009, Bd 5701. Springer, Heidelberg, S 143–158 Ferreira DR, Gillblad D (2009) Discovering process models from unlabelled event logs. In: Dayal U, Eder J, Koehler J, Reijers HA (Hrsg) BPM 2009, Bd 5701. Springer, Heidelberg, S 143–158
go back to reference Goodfellow I, Bengio Y, Courville A (2016) Deep learning. MIT Press, Cambridge, MAMATH Goodfellow I, Bengio Y, Courville A (2016) Deep learning. MIT Press, Cambridge, MAMATH
go back to reference Goodman B, Flaxman S (2017) European Union regulations on algorithmic decision-making and a „right to explanation“. AI Mag 38(3):50–57 Goodman B, Flaxman S (2017) European Union regulations on algorithmic decision-making and a „right to explanation“. AI Mag 38(3):50–57
go back to reference Gunning D (2017) Explainable artificial intelligence (xai). Defense Advanced Research Projects Agency (DARPA), nd Web 2 Gunning D (2017) Explainable artificial intelligence (xai). Defense Advanced Research Projects Agency (DARPA), nd Web 2
go back to reference Halaška, M, Šperka, R (2018) Process mining–the enhancement of elements industry 4.0. In: 2018 4th international conference on computer and information sciences (ICCOINS). Stockholm, S 1–6 Halaška, M, Šperka, R (2018) Process mining–the enhancement of elements industry 4.0. In: 2018 4th international conference on computer and information sciences (ICCOINS). Stockholm, S 1–6
go back to reference He QP, Wang J (2018) Statistics pattern analysis: a statistical process monitoring tool for smart manufacturing. Comput Aided Chem Eng 44:2071–2076CrossRef He QP, Wang J (2018) Statistics pattern analysis: a statistical process monitoring tool for smart manufacturing. Comput Aided Chem Eng 44:2071–2076CrossRef
go back to reference Heinrich K, Zschech P, Janiesch C, Bonin M (2020) Ein Vergleich aktueller Deep-Learning-Architekturen zur Prognose von Prozessverhalten. 15. Internationale Tagung Wirtschaftsinformatik (WI), Potsdam Heinrich K, Zschech P, Janiesch C, Bonin M (2020) Ein Vergleich aktueller Deep-Learning-Architekturen zur Prognose von Prozessverhalten. 15. Internationale Tagung Wirtschaftsinformatik (WI), Potsdam
go back to reference Hermann M, Pentek T, Otto B (2016) Design principles for industrie 4.0 scenarios. In: 2016 49th Hawaii international conference on system sciences (HICSS). Koloa, S 3928–3937 Hermann M, Pentek T, Otto B (2016) Design principles for industrie 4.0 scenarios. In: 2016 49th Hawaii international conference on system sciences (HICSS). Koloa, S 3928–3937
go back to reference Kober J, Bagnell JA, Peters J (2013) Reinforcement learning in robotics: a survey. Int J Robot Res 32(11):1238–1274CrossRef Kober J, Bagnell JA, Peters J (2013) Reinforcement learning in robotics: a survey. Int J Robot Res 32(11):1238–1274CrossRef
go back to reference Kotsiantis SB, Zaharakis I, Pintelas P (2007) Supervised machine learning: a review of classification techniques. Informatica 31(3):249–268MathSciNet Kotsiantis SB, Zaharakis I, Pintelas P (2007) Supervised machine learning: a review of classification techniques. Informatica 31(3):249–268MathSciNet
go back to reference Marsland S (2011) Machine learning: an algorithmic perspective. Taylor & Francis, New YorkCrossRef Marsland S (2011) Machine learning: an algorithmic perspective. Taylor & Francis, New YorkCrossRef
go back to reference Peffers K, Tuunanen T, Niehaves B (2018) Design science research genres: introduction to the special issue on exemplars and criteria for applicable design science research. Eur J Inf Syst 27(2):129–139CrossRef Peffers K, Tuunanen T, Niehaves B (2018) Design science research genres: introduction to the special issue on exemplars and criteria for applicable design science research. Eur J Inf Syst 27(2):129–139CrossRef
go back to reference Redding G, Dumas M, Ter Hofstede AH, Iordachescu A (2008) Transforming object-oriented models to process-oriented models. In: ter Hofstede AHM, Benatallah B, Paik H-Y (Hrsg) BPM Workshops 2007, Bd 4928. LNCS, Heidelberg, S 132–143 Redding G, Dumas M, Ter Hofstede AH, Iordachescu A (2008) Transforming object-oriented models to process-oriented models. In: ter Hofstede AHM, Benatallah B, Paik H-Y (Hrsg) BPM Workshops 2007, Bd 4928. LNCS, Heidelberg, S 132–143
go back to reference Saul LK, Roweis ST (2003) Think globally, fit locally: unsupervised learning of low dimensional manifolds. J Mach Learn Res 4:119–155MathSciNetMATH Saul LK, Roweis ST (2003) Think globally, fit locally: unsupervised learning of low dimensional manifolds. J Mach Learn Res 4:119–155MathSciNetMATH
go back to reference Suriadi S, Andrews R, ter Hofstede AH, Wynn MT (2017) Event log imperfection patterns for process mining: towards a systematic approach to cleaning event logs. Inf Syst 64:132–150CrossRef Suriadi S, Andrews R, ter Hofstede AH, Wynn MT (2017) Event log imperfection patterns for process mining: towards a systematic approach to cleaning event logs. Inf Syst 64:132–150CrossRef
go back to reference Swartout WR (1983) XPLAIN: a system for creating and explaining expert consulting programs. Artif Intell 21(3):285–325CrossRef Swartout WR (1983) XPLAIN: a system for creating and explaining expert consulting programs. Artif Intell 21(3):285–325CrossRef
go back to reference Walicki M, Ferreira DR (2011) Sequence partitioning for process mining with unlabeled event logs. Data Knowl Eng 70(10):821–841CrossRef Walicki M, Ferreira DR (2011) Sequence partitioning for process mining with unlabeled event logs. Data Knowl Eng 70(10):821–841CrossRef
go back to reference Wang G, Gunasekaran A, Ngai EW, Papadopoulos T (2016) Big data analytics in logistics and supply chain management: certain investigations for research and applications. Int J Prod Econ 176:98–110CrossRef Wang G, Gunasekaran A, Ngai EW, Papadopoulos T (2016) Big data analytics in logistics and supply chain management: certain investigations for research and applications. Int J Prod Econ 176:98–110CrossRef
go back to reference Wang S, Chaovalitwongse W, Babuska R (2012) Machine learning algorithms in bipedal robot control. IEEE Trans Syst Man Cybern Part C 42(5):728–743CrossRef Wang S, Chaovalitwongse W, Babuska R (2012) Machine learning algorithms in bipedal robot control. IEEE Trans Syst Man Cybern Part C 42(5):728–743CrossRef
go back to reference Wang Z, Gao J, Chen R, Wang J (2018) A modified KNN algorithm for activity recognition in smart home. In: International congress of economics and business, vol 96, Guilin Wang Z, Gao J, Chen R, Wang J (2018) A modified KNN algorithm for activity recognition in smart home. In: International congress of economics and business, vol 96, Guilin
go back to reference Wanner J, Herm L-V, Janiesch C (2020) How much is the black box? The value of explainability inf machine learning models. In: 28th European conference on information systems (ECIS). AIS, Marrakesh Wanner J, Herm L-V, Janiesch C (2020) How much is the black box? The value of explainability inf machine learning models. In: 28th European conference on information systems (ECIS). AIS, Marrakesh
go back to reference Webster J, Watson R (2002) Analyzing the past to prepare for the future: writing a literature review. Manag Inf Syst Q 26(2):xiii–xxiii Webster J, Watson R (2002) Analyzing the past to prepare for the future: writing a literature review. Manag Inf Syst Q 26(2):xiii–xxiii
go back to reference Yang H, Park M, Cho M, Song M, Kim S (2014) A system architecture for manufacturing process analysis based on big data and process mining techniques. In: 2014 IEEE international conference on big data (Big Data). Washington DC, S 1024–1029 Yang H, Park M, Cho M, Song M, Kim S (2014) A system architecture for manufacturing process analysis based on big data and process mining techniques. In: 2014 IEEE international conference on big data (Big Data). Washington DC, S 1024–1029
Metadata
Title
Digitalisierungspotenziale der Instandhaltung 4.0 – Von der Aufbereitung binärer Daten zum Einsatz transparenter künstlicher Intelligenz
Authors
Jonas Wanner
Lukas-Valentin Herm
Christian Janiesch
Copyright Year
2021
DOI
https://doi.org/10.1007/978-3-658-32439-1_10

Premium Partner