Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

Published in: Physics of Metals and Metallography 4/2022

01-04-2022 | ELECTRICAL AND MAGNETIC PROPERTIES

Direct and Inverse Magnetocaloric Effect in a Ni50Mn35Al2Sn13 Heusler-Alloy Ribbon Sample

Authors: A. G. Gamzatov, Sh. K. Khizriev, A. M. Aliev

Published in: Physics of Metals and Metallography | Issue 4/2022

Login to get access
share
SHARE

Abstract

The magnetization of a fast-hardened ribbon Ni50Mn35Al2Sn13 sample has been studied and its magnetocaloric effect (MCE) has been directly measured in the temperature range 100–350 K. The MCE has been investigated in a cyclic magnetic field of 1.8 T strength at a frequency of 0.2 Hz. The value of the inverse effect near the temperature of the magnetostructural phase transition (MSPT) has been shown to depend on the rate of temperature scanning. The higher the scanning rate, the greater the MCE value due to the kinetic relaxation effect in the martensitic phase and the irreversibility of the phase transition in the magnetic fields used. The value of the inverse effect when the magnetic field is turned on once is –0.39 K in the field of 18 kOe, and the value of the direct effect is 0.2 K. The significant magnetization increase observed near the ТС in a weak magnetic field (100 Oe) has been attributed to both the Hopkinson effect and the coexistence of two crystalline phases (austenite–martensite).
Literature
1.
go back to reference B. Yu, M. Liu, P. W. Egolf, and A. Kitanovski, “A review of magnetic refrigerator and heat pump prototypes built before the year 2010,” Int. J. Refrig. 33 (6), 10291060 (2010). B. Yu, M. Liu, P. W. Egolf, and A. Kitanovski, “A review of magnetic refrigerator and heat pump prototypes built before the year 2010,” Int. J. Refrig. 33 (6), 10291060 (2010).
2.
go back to reference K. Klinar and A. Kitanovski, “Thermal control elements for caloric energy conversion (review),” Renewable Sustainable Energy Rev. 118, 109571 (2020). CrossRef K. Klinar and A. Kitanovski, “Thermal control elements for caloric energy conversion (review),” Renewable Sustainable Energy Rev. 118, 109571 (2020). CrossRef
3.
go back to reference Y. Zhang, “Review of the structural, magnetic and magnetocaloric properties internary rare earth RE 2T 2X type intermetallic compounds,” J. Alloys Compd. 787, 1173–1186 (2019). CrossRef Y. Zhang, “Review of the structural, magnetic and magnetocaloric properties internary rare earth RE 2T 2X type intermetallic compounds,” J. Alloys Compd. 787, 1173–1186 (2019). CrossRef
4.
go back to reference L. Li and M. Yan, “Recent progresses in exploring the rare earth based intermetallic compounds for cryogenic magnetic refrigeration,” J. Alloys Compd. 823, 153810 (2020). CrossRef L. Li and M. Yan, “Recent progresses in exploring the rare earth based intermetallic compounds for cryogenic magnetic refrigeration,” J. Alloys Compd. 823, 153810 (2020). CrossRef
5.
go back to reference A. M. Aliev, A. B. Batdalov, I. K. Kamilov, V. V. Koledov, V. G. Shavrov, V. D. Buchelnikov, J. García, V. M. Prida, and B. Hernando, “Magnetocaloric effect in ribbon samples of Heusler alloys Ni–Mn–M (M = In, Sn),” Appl. Phys. Lett. 97, 212505 (2010). CrossRef A. M. Aliev, A. B. Batdalov, I. K. Kamilov, V. V. Koledov, V. G. Shavrov, V. D. Buchelnikov, J. García, V. M. Prida, and B. Hernando, “Magnetocaloric effect in ribbon samples of Heusler alloys Ni–Mn–M (M = In, Sn),” Appl. Phys. Lett. 97, 212505 (2010). CrossRef
6.
go back to reference A. Aryala, Y. Koshkid’ko, I. Dubenko, C. F. Sánchez-Valdésc, J. L. Sánchez Llamazares, E. Lähderanta, S. Pandey, A. Granovsky, J. Cwik, S. Stadler, and N. Ali, “Direct and indirect measurements of the magnetic and magnetocaloric properties of Ni0.895Cr0.105MnGe1.05 melt-spun ribbons in high magnetic fields,” J. Magn. Magn. Mater. 488, 165359 (2019). CrossRef A. Aryala, Y. Koshkid’ko, I. Dubenko, C. F. Sánchez-Valdésc, J. L. Sánchez Llamazares, E. Lähderanta, S. Pandey, A. Granovsky, J. Cwik, S. Stadler, and N. Ali, “Direct and indirect measurements of the magnetic and magnetocaloric properties of Ni0.895Cr0.105MnGe1.05 melt-spun ribbons in high magnetic fields,” J. Magn. Magn. Mater. 488, 165359 (2019). CrossRef
7.
go back to reference I. D. Rodionova, Y. S. Koshkid’ko, J. Cwik, A. Quetz, S. Pandey, A. Aryal, I. S. Dubenko, S. Stadler, N. Ali, I. S. Titov, M. Blinov, M. V. Prudnikova, V. N. Prudnikov, E. Lähderanta, and A. B. Granovskii, “Magnetocaloric effect in Ni 50Mn 35In 15 Heusler alloy in low and high magnetic fields,” JETP Lett. 101 (6), 385–389 (2015). CrossRef I. D. Rodionova, Y. S. Koshkid’ko, J. Cwik, A. Quetz, S. Pandey, A. Aryal, I. S. Dubenko, S. Stadler, N. Ali, I. S. Titov, M. Blinov, M. V. Prudnikova, V. N. Prudnikov, E. Lähderanta, and A. B. Granovskii, “Magnetocaloric effect in Ni 50Mn 35In 15 Heusler alloy in low and high magnetic fields,” JETP Lett. 101 (6), 385–389 (2015). CrossRef
8.
go back to reference T. Gottschall, K.P. Skokov, B. Frincu, and O. Gutfleisch, “Large reversible magnetocaloric effect in Ni–Mn–In–Co,” Appl. Phys. Lett. 106 (2), 021901 (2015). CrossRef T. Gottschall, K.P. Skokov, B. Frincu, and O. Gutfleisch, “Large reversible magnetocaloric effect in Ni–Mn–In–Co,” Appl. Phys. Lett. 106 (2), 021901 (2015). CrossRef
9.
go back to reference T. Gottschall, A. Gràcia-Condal, M. Fries, A. Taubel, L. Pfeuffer, L. Mañosa, A. Planes, K. P. Skokov, and O. Gutfleisch, “A multicaloric cooling cycle that exploits thermal hysteresis,” Nat. Mater. 17, 929–934 (2018). CrossRef T. Gottschall, A. Gràcia-Condal, M. Fries, A. Taubel, L. Pfeuffer, L. Mañosa, A. Planes, K. P. Skokov, and O. Gutfleisch, “A multicaloric cooling cycle that exploits thermal hysteresis,” Nat. Mater. 17, 929–934 (2018). CrossRef
10.
go back to reference T. Gottschall, K. P. Skokov, F. Scheibel, M. Acet, M. Ghorbani Zavareh, Y. Skourski, J. Wosnitza, M. Farle, and O. Gutfleisch, “Dynamical effects of the martensitic transition in magnetocaloric Heusler alloys from direct ∆ T ad measurements under different magnetic-field-sweep rates,” Phys. Rev. Appl. 5 (2), 024013 (2016). CrossRef T. Gottschall, K. P. Skokov, F. Scheibel, M. Acet, M. Ghorbani Zavareh, Y. Skourski, J. Wosnitza, M. Farle, and O. Gutfleisch, “Dynamical effects of the martensitic transition in magnetocaloric Heusler alloys from direct ∆ T ad measurements under different magnetic-field-sweep rates,” Phys. Rev. Appl. 5 (2), 024013 (2016). CrossRef
11.
go back to reference A. G. Gamzatov, A. M. Aliev, A. Ghotbi Varzaneh, P. Kameli, I. Abdolhosseini Sarsari, and S. C. Yu, “Inverse-direct magnetocaloric effect crossover in Ni 47Mn 40Sn 12.5Cu 0.5 Heusler alloy in cyclic magnetic fields,” Appl. Phys. Lett. 113, 172406 (2018). CrossRef A. G. Gamzatov, A. M. Aliev, A. Ghotbi Varzaneh, P. Kameli, I. Abdolhosseini Sarsari, and S. C. Yu, “Inverse-direct magnetocaloric effect crossover in Ni 47Mn 40Sn 12.5Cu 0.5 Heusler alloy in cyclic magnetic fields,” Appl. Phys. Lett. 113, 172406 (2018). CrossRef
12.
go back to reference H. Y. Nguyen, T. M. Nguyen, M. Q. Vu, T. T. Pham, D. T. Tran, H. D. Nguyen, L. T. Nguyen, H. H. Nguyen, V. Koledov, A. Kamantsev, A. Mashirov, and H. D. Nguyen, “Influence of Al on structure, magnetic properties and magnetocaloric effect of Ni 50Mn 37 – xAl xSn 13 ribbons,” Adv. Nat. Sci.: Nanosci. Nanotechnol. 9, 025007 (2018). H. Y. Nguyen, T. M. Nguyen, M. Q. Vu, T. T. Pham, D. T. Tran, H. D. Nguyen, L. T. Nguyen, H. H. Nguyen, V. Koledov, A. Kamantsev, A. Mashirov, and H. D. Nguyen, “Influence of Al on structure, magnetic properties and magnetocaloric effect of Ni 50Mn 37 – xAl xSn 13 ribbons,” Adv. Nat. Sci.: Nanosci. Nanotechnol. 9, 025007 (2018).
13.
go back to reference A. G. Gamzatov, A. B. Batdalov, Sh. K. Khizriev, A. M. Aliev, L. N. Khanov, N. H. Yen, N. H. Dan, H. Zhou, S.-C. Yu, and D.-H. Kim, “Phase transitions, thermal, electrical, and magnetocaloric properties of Ni 50Mn 37 – xAl xSn 13 ( x = 2, 4) ribbon samples,” J. Alloys Compd. 842, 155783 (2020). CrossRef A. G. Gamzatov, A. B. Batdalov, Sh. K. Khizriev, A. M. Aliev, L. N. Khanov, N. H. Yen, N. H. Dan, H. Zhou, S.-C. Yu, and D.-H. Kim, “Phase transitions, thermal, electrical, and magnetocaloric properties of Ni 50Mn 37 – xAl xSn 13 ( x = 2, 4) ribbon samples,” J. Alloys Compd. 842, 155783 (2020). CrossRef
14.
go back to reference A. G. Gamzatov, A. M. Aliev, A. B. Batdalov, Sh. K. Khizriev, D. A. Kuzmin, A. P. Kamantsev, D.‑H. Kim, N. H. Yen, N. H. Dan, and S.-C. Yu, “Dynamics of the magnetocaloric effect in cyclic magnetic fields in Ni 50Mn 35Al 2Sn 13 ribbon sample,” J. Mater. Sci. 56, 15397–15406 (2021). CrossRef A. G. Gamzatov, A. M. Aliev, A. B. Batdalov, Sh. K. Khizriev, D. A. Kuzmin, A. P. Kamantsev, D.‑H. Kim, N. H. Yen, N. H. Dan, and S.-C. Yu, “Dynamics of the magnetocaloric effect in cyclic magnetic fields in Ni 50Mn 35Al 2Sn 13 ribbon sample,” J. Mater. Sci. 56, 15397–15406 (2021). CrossRef
15.
go back to reference V. Zhukova, M. Ipatov, A. Granovsky, and A. Zhukov, “Magnetic properties of Ni–Mn–In–Co Heusler-type glass-coated microwires,” J. Appl. Phys. 115, 17A939 (2014). V. Zhukova, M. Ipatov, A. Granovsky, and A. Zhukov, “Magnetic properties of Ni–Mn–In–Co Heusler-type glass-coated microwires,” J. Appl. Phys. 115, 17A939 (2014).
16.
go back to reference L. H. Bennett, V. Provenzano, R.D. Shull, I. Levin, E. Dell Torre, and Y. Jin, “Ferri- to ferro-magnetic transition in the martensitic phase of a Heusler alloy,” J. Alloys Compd. 525, 34–38 (2012). CrossRef L. H. Bennett, V. Provenzano, R.D. Shull, I. Levin, E. Dell Torre, and Y. Jin, “Ferri- to ferro-magnetic transition in the martensitic phase of a Heusler alloy,” J. Alloys Compd. 525, 34–38 (2012). CrossRef
17.
go back to reference M. Ovichi, H. Elbidweihy, E. Della Torre, L. H. Bennett, M. Ghahremani, F. Johnson, and M. Zou, “Magnetocaloric effect in NiMnInSi Heusler alloys,” J. Appl. Phys. 117, 17D107 (2015). M. Ovichi, H. Elbidweihy, E. Della Torre, L. H. Bennett, M. Ghahremani, F. Johnson, and M. Zou, “Magnetocaloric effect in NiMnInSi Heusler alloys,” J. Appl. Phys. 117, 17D107 (2015).
18.
go back to reference L. González-Legarreta, W. O. Rosa, J. García, et al., “Annealing effect on the crystal structure and exchange bias in Heusler Ni 45.5Mn 43.0In 11.5 alloy ribbons,” J. Alloys Compd. 582, 588–593 (2014). CrossRef L. González-Legarreta, W. O. Rosa, J. García, et al., “Annealing effect on the crystal structure and exchange bias in Heusler Ni 45.5Mn 43.0In 11.5 alloy ribbons,” J. Alloys Compd. 582, 588–593 (2014). CrossRef
19.
go back to reference A. M. Aliev, “Direct magnetocaloric effect measurement technique in alternating magnetic fields, 2014. arXiv:1409.6898. A. M. Aliev, “Direct magnetocaloric effect measurement technique in alternating magnetic fields, 2014. arXiv:1409.6898.
20.
go back to reference A. M. Aliev, A. B. Batdalo, and V. S. Kalitka, “Magnetocaloric properties of manganites in alternating magnetic fields,” Pis’ma Zh. Eksp. Teor. Fiz. 90, 736–739 (2009). A. M. Aliev, A. B. Batdalo, and V. S. Kalitka, “Magnetocaloric properties of manganites in alternating magnetic fields,” Pis’ma Zh. Eksp. Teor. Fiz. 90, 736–739 (2009).
21.
go back to reference P. Czaja, J. Przewoźnik, Ł. Gondek, L. Hawelek, A. Żywczak, and E. Zschech, “Low temperature stability of 4O martensite in Ni 49.1Mn 38.9Sn 12 metamagnetic Heusler alloy ribbons,” J. Magn. Magn. Mater. 421, 19–24 (2017). CrossRef P. Czaja, J. Przewoźnik, Ł. Gondek, L. Hawelek, A. Żywczak, and E. Zschech, “Low temperature stability of 4O martensite in Ni 49.1Mn 38.9Sn 12 metamagnetic Heusler alloy ribbons,” J. Magn. Magn. Mater. 421, 19–24 (2017). CrossRef
Metadata
Title
Direct and Inverse Magnetocaloric Effect in a Ni50Mn35Al2Sn13 Heusler-Alloy Ribbon Sample
Authors
A. G. Gamzatov
Sh. K. Khizriev
A. M. Aliev
Publication date
01-04-2022
Publisher
Pleiades Publishing
Published in
Physics of Metals and Metallography / Issue 4/2022
Print ISSN: 0031-918X
Electronic ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X22040056