Skip to main content
Top

Hint

Swipe to navigate through the chapters of this book

2021 | OriginalPaper | Chapter

8. Direct Determination of Viscosity of Supercritical Solutions

Authors : Thomas G. Steigerwald, Eberhard Schlücker

Published in: Ammonothermal Synthesis and Crystal Growth of Nitrides

Publisher: Springer International Publishing

Abstract

The following chapter is mainly aimed at simulators and crystal growers, as viscosity has an influence on the flow behaviour in the reactor and the diffusion coefficient in the crystal’s vicinity. So, the chapter gives an overview of influencing factors to viscosity in ammonothermal media, which are the pressure and temperature as well as the concentration of used mineralizers. Therefore, different possible viscometers are described and discussed in detail for its potential use in ammonothermal media. Hereby two promising options are presented in detail: a modified rolling ball viscometer as well as an adaptation of the ultrasonic pulse-echo method for viscosity measurement for ammonothermal systems. While the last is mostly based on literature research and only some general prove of principle are carried out, the first one is fully described and analysed during operation. This means for the adaptation of this principle four critical aspects have to be overcome. As a result, the viscosity of ammonia in the range above 400 °C up to 600 °C at maximum pressure of 252 MPa is shown. Additionally, some measurements of ammonia-ammonium-fluoride-mixtures are compared with pure ammonia, whereas the viscosity is about 1.4 times lager with ammonium fluoride then without.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference H. Enayati, A.J. Chandy, M.J. Braun, N. Horning, 3D large eddy simulation (LES) calculations and experiments of natural convection in a laterally-heated cylindrical enclosure for crystal growth. Int. J. Therm. Sci. 1–21 (2017) H. Enayati, A.J. Chandy, M.J. Braun, N. Horning, 3D large eddy simulation (LES) calculations and experiments of natural convection in a laterally-heated cylindrical enclosure for crystal growth. Int. J. Therm. Sci. 1–21 (2017)
2.
go back to reference Q.S. Chen, S. Pendurti, V. Prasad, Effects of baffle design on fluid flow and heat transfer in ammonothermal growth of nitrides. J. Cryst. Growth 271–277 (2004) Q.S. Chen, S. Pendurti, V. Prasad, Effects of baffle design on fluid flow and heat transfer in ammonothermal growth of nitrides. J. Cryst. Growth 271–277 (2004)
3.
go back to reference J. Erlekampf, J. Seebeck, P. Savva, E. Meissner, J. Friedrich, N.S.A. Alt, E. Schlücker, L. Frey, Numerical time-dependent 3D simulation of flow pattern and heat distribution in an ammonothermal system with various baffle shapes. J. Cryst. Growth 403, 96–104 (2014) CrossRef J. Erlekampf, J. Seebeck, P. Savva, E. Meissner, J. Friedrich, N.S.A. Alt, E. Schlücker, L. Frey, Numerical time-dependent 3D simulation of flow pattern and heat distribution in an ammonothermal system with various baffle shapes. J. Cryst. Growth 403, 96–104 (2014) CrossRef
4.
go back to reference D. Ehrentraut, Y. Kagamitani, C. Yokoyama, T. Fukuda, Physico-chemical features of the acid ammonothermal growth of GaN. J. Cryst. Growth 310, 891–895 (2008) CrossRef D. Ehrentraut, Y. Kagamitani, C. Yokoyama, T. Fukuda, Physico-chemical features of the acid ammonothermal growth of GaN. J. Cryst. Growth 310, 891–895 (2008) CrossRef
5.
go back to reference N. Alt, E. Meissner, E. Schlücker, L. Frey, In situ monitoring technologies for ammonthermal reactors. Phys. Status Solidi 9, 436–439 (2012) N. Alt, E. Meissner, E. Schlücker, L. Frey, In situ monitoring technologies for ammonthermal reactors. Phys. Status Solidi 9, 436–439 (2012)
6.
go back to reference J. Kunes, Dimensionless Physical Quantities in Science and Engineering (Elsevier, London, Waltham, 2012) J. Kunes, Dimensionless Physical Quantities in Science and Engineering (Elsevier, London, Waltham, 2012)
7.
go back to reference T. Chen, H. John, J. Xu, Q. Lu, J. Hawk, X. Liu, Influence of surface modifications on pitting corrosion behavior of nickel-base alloy 718. Part 2: Effect of aging treatment. Corros. Sci. 78, 151–161 (2014) T. Chen, H. John, J. Xu, Q. Lu, J. Hawk, X. Liu, Influence of surface modifications on pitting corrosion behavior of nickel-base alloy 718. Part 2: Effect of aging treatment. Corros. Sci. 78, 151–161 (2014)
8.
go back to reference Q. Chen, Y. Jiang, J. Yan, M. Qin, Progress in modeling of fluid flows in crystal growth processes. Prog. Nat. Sci. 18, 1465–1473 (2008) CrossRef Q. Chen, Y. Jiang, J. Yan, M. Qin, Progress in modeling of fluid flows in crystal growth processes. Prog. Nat. Sci. 18, 1465–1473 (2008) CrossRef
9.
go back to reference Q.S. Chen, S. Pendurti, V. Prasad, Modeling of ammonothermal growth of gallium nitride single crystals. J. Mater. Sci. 41, 1409–1414 (2006) CrossRef Q.S. Chen, S. Pendurti, V. Prasad, Modeling of ammonothermal growth of gallium nitride single crystals. J. Mater. Sci. 41, 1409–1414 (2006) CrossRef
10.
go back to reference Y. Masuda, A. Suzuki, T. Ishiguro, C. Yokoyama, Numerical simulation of heat and fluid flow in ammonothermal gan bulk crystal growth process. Jpn. J. Appl. Phys. 52, 08JA05 (2013) Y. Masuda, A. Suzuki, T. Ishiguro, C. Yokoyama, Numerical simulation of heat and fluid flow in ammonothermal gan bulk crystal growth process. Jpn. J. Appl. Phys. 52, 08JA05 (2013)
11.
go back to reference L. Kulisiewicz, A. Delgado, High-pressure rheological measurement methods: a review. Appl. Rheol. 20, 13018 (2010) L. Kulisiewicz, A. Delgado, High-pressure rheological measurement methods: a review. Appl. Rheol. 20, 13018 (2010)
12.
go back to reference E. Kuss, Federbalg-Kapillar-Viskosimeter, Patent DE 3237 130 A1 E. Kuss, Federbalg-Kapillar-Viskosimeter, Patent DE 3237 130 A1
13.
go back to reference S. Kawashima, Z. Shirahama, N. Hidekazu, Capillary type viscosimeter, US Patent US4932242A S. Kawashima, Z. Shirahama, N. Hidekazu, Capillary type viscosimeter, US Patent US4932242A
14.
go back to reference G.D. Galvin, J.F. Hutton, B. Jones, Development of a high-pressure, high-shear-rate capillary viscometer. J. Nonnewton. Fluid Mech. 8, 11–28 (1981) CrossRef G.D. Galvin, J.F. Hutton, B. Jones, Development of a high-pressure, high-shear-rate capillary viscometer. J. Nonnewton. Fluid Mech. 8, 11–28 (1981) CrossRef
15.
go back to reference V. Semjonow, Über ein Rotationsviskosimeter zur Messung der Druckabhängigkeit der Viskosität hochpolymerer Schmelzen. Rheol. Acta 2, 138–143 (1962) CrossRef V. Semjonow, Über ein Rotationsviskosimeter zur Messung der Druckabhängigkeit der Viskosität hochpolymerer Schmelzen. Rheol. Acta 2, 138–143 (1962) CrossRef
16.
go back to reference R.J. Murphy, Apparatus and method for measuring viscosity, US Patent US4571988A R.J. Murphy, Apparatus and method for measuring viscosity, US Patent US4571988A
17.
go back to reference S.-H. Sheen, H.-T. Chien, A.C. Paul Raptis, in Instrumentation for Fluid Particle Flow (Elsevier, 1999), pp. 162–211 S.-H. Sheen, H.-T. Chien, A.C. Paul Raptis, in Instrumentation for Fluid Particle Flow (Elsevier, 1999), pp. 162–211
18.
go back to reference T. Retsina, S.M. Richardson, W.A. Wakeham, The theory of a vibrating-rod viscometer. Appl. Sci. Res. 43, 325–346 (1987) CrossRef T. Retsina, S.M. Richardson, W.A. Wakeham, The theory of a vibrating-rod viscometer. Appl. Sci. Res. 43, 325–346 (1987) CrossRef
19.
go back to reference J.V. Fitzgerald, F.J. Matusik, J.L. Batton, High Viscosity transducer for vibratory viscometer, US Patent US5317908A J.V. Fitzgerald, F.J. Matusik, J.L. Batton, High Viscosity transducer for vibratory viscometer, US Patent US5317908A
20.
go back to reference G. Bradfield, Improvements in or relating to Viscometers, Patent GB910881A G. Bradfield, Improvements in or relating to Viscometers, Patent GB910881A
21.
go back to reference S. Pimputkar, T.F. Malkowski, S. Griffiths, A. Espenlaub, S. Suihkonen, J.S. Speck, S. Nakamura, Stability of materials in supercritical ammonia solutions. J. Supercrit. Fluids 110, 193–229 (2016) CrossRef S. Pimputkar, T.F. Malkowski, S. Griffiths, A. Espenlaub, S. Suihkonen, J.S. Speck, S. Nakamura, Stability of materials in supercritical ammonia solutions. J. Supercrit. Fluids 110, 193–229 (2016) CrossRef
23.
go back to reference H. Herwig, Strömungsmechanik: Einführung in die Physik von technischen Strömungen (Vieweg+Teubner Verlag/GWV Fachverlage GmbH, Wiesbaden, 2008) H. Herwig, Strömungsmechanik: Einführung in die Physik von technischen Strömungen (Vieweg+Teubner Verlag/GWV Fachverlage GmbH, Wiesbaden, 2008)
24.
go back to reference J. Draxler, M. Siebenhofer, Verfahrenstechnik in Beispielen Problemstellungen, Lösungsansätze, Rechenwege (Springer, Wiesbaden, 2014) J. Draxler, M. Siebenhofer, Verfahrenstechnik in Beispielen Problemstellungen, Lösungsansätze, Rechenwege (Springer, Wiesbaden, 2014)
25.
go back to reference VDI Gesellschaft Verfahrenstechnik und Chemieingenieurwesen, VDI-Wärmeatlas, 11th edn. (Springer, Heidelberg, 2013) VDI Gesellschaft Verfahrenstechnik und Chemieingenieurwesen, VDI-Wärmeatlas, 11th edn. (Springer, Heidelberg, 2013)
26.
go back to reference W. Sutherland, LII. The viscosity of gases and molecular force. Lond. Edinb. Dublin Philos. Mag. J. Sci. 36, 507–531 (1893) W. Sutherland, LII. The viscosity of gases and molecular force. Lond. Edinb. Dublin Philos. Mag. J. Sci. 36, 507–531 (1893)
27.
go back to reference M.M. Lencka, A. Anderko, S.J. Sanders, R.D. Young, Modeling viscosity of multicomponent electrolyte solutions 1 (1998) M.M. Lencka, A. Anderko, S.J. Sanders, R.D. Young, Modeling viscosity of multicomponent electrolyte solutions 1 (1998)
28.
go back to reference G. Jones, M. Dole, The viscosity of aqueous solutions of strong electrolytes with special reference to barium chloride. J. Am. Chem. Soc. 51, 2950–2964 (1929) CrossRef G. Jones, M. Dole, The viscosity of aqueous solutions of strong electrolytes with special reference to barium chloride. J. Am. Chem. Soc. 51, 2950–2964 (1929) CrossRef
29.
go back to reference H.D.B. Jenkins, Y. Marcus, Viscosity B-coefficients of ions in solution. Chem. Rev. 95, 2695–2724 (1995) CrossRef H.D.B. Jenkins, Y. Marcus, Viscosity B-coefficients of ions in solution. Chem. Rev. 95, 2695–2724 (1995) CrossRef
30.
go back to reference D. Feakins, K.G. Lawrence, The relative viscosities of solutions of sodium and potassium chlorides and bromides in N-methylformamide at 25, 35, and 45°. J. Chem. Soc. A 212–219 (1966) D. Feakins, K.G. Lawrence, The relative viscosities of solutions of sodium and potassium chlorides and bromides in N-methylformamide at 25, 35, and 45°. J. Chem. Soc. A 212–219 (1966)
31.
go back to reference M.A. Motin, Temperature and concentration dependence of apparent molar volumes and viscosities of NaCl, NH 4Cl, CuCl 2, CuSO 4, and MgSO 4 in pure water and water + urea mixtures. J. Chem. Eng. Data 49, 94–98 (2004) CrossRef M.A. Motin, Temperature and concentration dependence of apparent molar volumes and viscosities of NaCl, NH 4Cl, CuCl 2, CuSO 4, and MgSO 4 in pure water and water + urea mixtures. J. Chem. Eng. Data 49, 94–98 (2004) CrossRef
32.
go back to reference R. Saeed, F. Uddin, S. Masood, N. Asif, Viscosities of ammonium salts in water and ethanol + water systems at different temperatures. J. Mol. Liq. 146, 112–115 (2009) CrossRef R. Saeed, F. Uddin, S. Masood, N. Asif, Viscosities of ammonium salts in water and ethanol + water systems at different temperatures. J. Mol. Liq. 146, 112–115 (2009) CrossRef
33.
go back to reference H. Baser, W. Schwieger, D. Freitag, T.G. Steigerwald, E. Schluecker, Solubility studies of sodium azide in liquid ammonia by in situ ultrasonic velocity measurement. Chem. Eng. Technol. 40, 1101–1106 (2017) CrossRef H. Baser, W. Schwieger, D. Freitag, T.G. Steigerwald, E. Schluecker, Solubility studies of sodium azide in liquid ammonia by in situ ultrasonic velocity measurement. Chem. Eng. Technol. 40, 1101–1106 (2017) CrossRef
34.
go back to reference F. Cohen-Tenoudji, L.A. Ahlberg, B.R. Tittmann, W.J. Pardee, High temperature ultrasonic viscometer, US Patent US4779452A F. Cohen-Tenoudji, L.A. Ahlberg, B.R. Tittmann, W.J. Pardee, High temperature ultrasonic viscometer, US Patent US4779452A
35.
go back to reference S.J. Kleis, L.A. Sanchez, Dependence of speed of sound on salinity and temperature in concentrated NaCl solutions. Sol. Energy (1990) S.J. Kleis, L.A. Sanchez, Dependence of speed of sound on salinity and temperature in concentrated NaCl solutions. Sol. Energy (1990)
36.
go back to reference S. Natarajan, T.W. Randolph, Ultrasonic velocity measurements in supercritical jet fuel, J. Supercrit. Fluids 10, 65–70 (1997) S. Natarajan, T.W. Randolph, Ultrasonic velocity measurements in supercritical jet fuel, J. Supercrit. Fluids 10, 65–70 (1997)
37.
go back to reference S.H. Sheen, H.-T. Chien, A.C. Raptis, in Review of Progress in Quantitative Nondestructive Evaluation, ed. by D.O. Thompson, D.E. Chimenti, vol. 14 (Plenum Press, New York, 1995), pp. 1151–1158 S.H. Sheen, H.-T. Chien, A.C. Raptis, in Review of Progress in Quantitative Nondestructive Evaluation, ed. by D.O. Thompson, D.E. Chimenti, vol. 14 (Plenum Press, New York, 1995), pp. 1151–1158
38.
go back to reference W. Roth, S.R. Rich, A new method for continuous viscosity measurement. General theory of the ultra-viscoson. J. Appl. Phys. 24, 940 (1953) W. Roth, S.R. Rich, A new method for continuous viscosity measurement. General theory of the ultra-viscoson. J. Appl. Phys. 24, 940 (1953)
39.
go back to reference V. Shah, K. Balasubramaniam, R.D. Costley, J. Singh, in Review of Progress in Quantitative Nondestructive Evaluation (Springer US, Boston, MA, 1996), pp. 2067–2071 V. Shah, K. Balasubramaniam, R.D. Costley, J. Singh, in Review of Progress in Quantitative Nondestructive Evaluation (Springer US, Boston, MA, 1996), pp. 2067–2071
40.
go back to reference S.-H. Sheen, A.C. Raptis, A Feasibility Study on Advanced Techniques for On-line Monitoring of Coal Slurry Viscosity. Argonne Natl. Lab. Tech. Memo. 87 (1987) S.-H. Sheen, A.C. Raptis, A Feasibility Study on Advanced Techniques for On-line Monitoring of Coal Slurry Viscosity. Argonne Natl. Lab. Tech. Memo. 87 (1987)
41.
go back to reference R. Kažys, A. Voleišis, B. Voleišienė, High temperature ultrasonic transducers: review. Ultragarsas “Ultrasound” 63, 7–17 (2016) R. Kažys, A. Voleišis, B. Voleišienė, High temperature ultrasonic transducers: review. Ultragarsas “Ultrasound” 63, 7–17 (2016)
42.
go back to reference J.O. Kim, H.H. Bau, Instrument for simultaneous measurement of density and viscosity. Rev. Sci. Instrum. 60, 1111–1115 (1989) CrossRef J.O. Kim, H.H. Bau, Instrument for simultaneous measurement of density and viscosity. Rev. Sci. Instrum. 60, 1111–1115 (1989) CrossRef
43.
go back to reference S.H. Sheen, K.J. Reimann, W.P. Lawrence, A.C. Raptis, in Ultrasonics Symposium Proceedings (IEEE, 1988), pp. 537–541 S.H. Sheen, K.J. Reimann, W.P. Lawrence, A.C. Raptis, in Ultrasonics Symposium Proceedings (IEEE, 1988), pp. 537–541
44.
go back to reference H.J. Mcskimin, P. Andreatch, Measurement of dynamic shear impedance of low viscosity liquids at ultrasonic frequencies. J. Acoust. Soc. Am. 42, 248–252 (1967) CrossRef H.J. Mcskimin, P. Andreatch, Measurement of dynamic shear impedance of low viscosity liquids at ultrasonic frequencies. J. Acoust. Soc. Am. 42, 248–252 (1967) CrossRef
45.
go back to reference S. Sherrit, X. Bao, Y. Bar-Cohen, Z. Chang, in Smart Structures and Materials 2004: Active Materials, ed. by D.C. Lagoudas (International Society for Optics and Photonics, 2004), p. 411 S. Sherrit, X. Bao, Y. Bar-Cohen, Z. Chang, in Smart Structures and Materials 2004: Active Materials, ed. by D.C. Lagoudas (International Society for Optics and Photonics, 2004), p. 411
46.
go back to reference K. Balasubramaniam, V.V. Shah, R.D. Costley, G. Boudreaux, J.P. Singh, High temperature ultrasonic sensor for the simultaneous measurement of viscosity and temperature of melts. Rev. Sci. Instrum. 70, 4618 (1999) CrossRef K. Balasubramaniam, V.V. Shah, R.D. Costley, G. Boudreaux, J.P. Singh, High temperature ultrasonic sensor for the simultaneous measurement of viscosity and temperature of melts. Rev. Sci. Instrum. 70, 4618 (1999) CrossRef
47.
go back to reference R.S. Moore, H.J. McSkimin, in Physical Acoustics (1970), pp. 167–242 R.S. Moore, H.J. McSkimin, in Physical Acoustics (1970), pp. 167–242
48.
go back to reference T.G. Steigerwald, N.S.A. Alt, B. Hertweck, E. Schlücker, Feasibility of density and viscosity measurements under ammonothermal conditions. J. Cryst. Growth 403, 59–65 (2014) CrossRef T.G. Steigerwald, N.S.A. Alt, B. Hertweck, E. Schlücker, Feasibility of density and viscosity measurements under ammonothermal conditions. J. Cryst. Growth 403, 59–65 (2014) CrossRef
49.
go back to reference R.M. Hubbard, G.G. Brown, The rolling ball viscometer. Ind. Eng. Chem. Anal. Ed. 15, 212–218 (1943) CrossRef R.M. Hubbard, G.G. Brown, The rolling ball viscometer. Ind. Eng. Chem. Anal. Ed. 15, 212–218 (1943) CrossRef
50.
go back to reference H.H. Buchter, Apparate und Armaturen der Chemischen Hochdrucktechnik Konstruktion, Berechnung und Herstellung (Springer, Berlin, 2014) H.H. Buchter, Apparate und Armaturen der Chemischen Hochdrucktechnik Konstruktion, Berechnung und Herstellung (Springer, Berlin, 2014)
51.
go back to reference Lamineries Matthey SA Inc., Legierung 718, 3 (2013) Lamineries Matthey SA Inc., Legierung 718, 3 (2013)
52.
go back to reference D. Joshi, Dissertation: Finite element simulation of machining a Nickel-based superalloy—Inconel 718, Oklahoma State University (2000) D. Joshi, Dissertation: Finite element simulation of machining a Nickel-based superalloy—Inconel 718, Oklahoma State University (2000)
53.
go back to reference Metals VDM Inc., VDM ® Alloy 718, Datasheet (2016) Metals VDM Inc., VDM ® Alloy 718, Datasheet (2016)
54.
go back to reference E.W. Lemmon, M.O. McLinden, D.G. Friend, Thermophysical Properties of Fluid Systems, NIST Stand (National Institute of Standards and Technology, Gaithersburg, MD, 2017) E.W. Lemmon, M.O. McLinden, D.G. Friend, Thermophysical Properties of Fluid Systems, NIST Stand (National Institute of Standards and Technology, Gaithersburg, MD, 2017)
55.
go back to reference T. Okamoto, Falling Body Viscometer, US Patent 3512396 T. Okamoto, Falling Body Viscometer, US Patent 3512396
57.
go back to reference K. Nishibata, M. Izuchi, A rolling ball viscometer for high pressure use. Phys. B + C 139, 903–906 (1986) K. Nishibata, M. Izuchi, A rolling ball viscometer for high pressure use. Phys. B + C 139, 903–906 (1986)
59.
go back to reference Deutsches Institut für Normung e. V, Thermoelemente - Teil 1: Thermospannungen und Grenzabweichungen (IEC 60584-1:2013); Deutsche Fassung EN 60584-1:2013 (Germany, 2013), p. 65 Deutsches Institut für Normung e. V, Thermoelemente - Teil 1: Thermospannungen und Grenzabweichungen (IEC 60584-1:2013); Deutsche Fassung EN 60584-1:2013 (Germany, 2013), p. 65
61.
go back to reference E. Schrüfer, L.M. Reindl, B. Zagar, Elektrische Messtechnik: Messung elektrischer und nichtelektrischer Größen (Carl Hanser Verlag GmbH & Co. KG, München, 2018) CrossRef E. Schrüfer, L.M. Reindl, B. Zagar, Elektrische Messtechnik: Messung elektrischer und nichtelektrischer Größen (Carl Hanser Verlag GmbH & Co. KG, München, 2018) CrossRef
62.
go back to reference S. Hesse, G. Schnell, Sensoren für die Prozess- und Fabrikautomation, 7th edn. (Springer, Plauen, 2009) CrossRef S. Hesse, G. Schnell, Sensoren für die Prozess- und Fabrikautomation, 7th edn. (Springer, Plauen, 2009) CrossRef
Metadata
Title
Direct Determination of Viscosity of Supercritical Solutions
Authors
Thomas G. Steigerwald
Eberhard Schlücker
Copyright Year
2021
DOI
https://doi.org/10.1007/978-3-030-56305-9_8