Skip to main content
Top
Published in: Cellulose 12/2019

13-07-2019 | Original Research

Direct dip-coating of carbon nanotubes onto polydopamine-templated cotton fabrics for wearable applications

Authors: Md. Shak Sadi, Junjie Pan, Anchang Xu, Deshan Cheng, Guangming Cai, Xin Wang

Published in: Cellulose | Issue 12/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Simple and facile fabrication techniques to load conductive components onto textiles for wearable applications are highly demanded. In this work, highly conductive cotton fabrics were fabricated by dip-coating of single-walled carbon nanotubes (CNTs) after polydopamine (PDA) templating. The coated fabrics were characterized by scanning electron microscopy, X-ray photoelectron spectroscopy and energy dispersive X-ray spectrum. The introduction of PDA enhanced the adhesion between fiber surface and the loaded CNTs, resulting in a conductivity of 41.5 Ω/sq for the coated fabrics. The CNT-PDA-cotton fabric showed great durability against repeated mechanical deformation (bending, folding) or multiple washing cycles. The excellent strain sensing performance of the coated fabrics granted them the application potential in real-time monitoring of different human motions such as speaking, drinking, walking, bending of finger and knee etc. Furthermore, the composite fabrics showed outstanding electric heating performance with a rise in the surface temperature to about 120 °C within 20 s at 6 V. The fabrication of CNT-PDA-cotton composite fabrics provides a novel and simple way of developing textile-based wearable electronics and heaters.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Amjadi M et al (2014) Highly stretchable and sensitive strain sensor based on silver nanowire–elastomer nanocomposite. ACS Nano 8(5):5154–5163CrossRefPubMed Amjadi M et al (2014) Highly stretchable and sensitive strain sensor based on silver nanowire–elastomer nanocomposite. ACS Nano 8(5):5154–5163CrossRefPubMed
go back to reference Amjadi M et al (2016) Stretchable, skin-mountable, and wearable strain sensors and their potential applications: a review. Adv Func Mater 26(11):1678–1698CrossRef Amjadi M et al (2016) Stretchable, skin-mountable, and wearable strain sensors and their potential applications: a review. Adv Func Mater 26(11):1678–1698CrossRef
go back to reference Cai G et al (2017) Flexible and wearable strain sensing fabrics. Chem Eng J 325:396–403CrossRef Cai G et al (2017) Flexible and wearable strain sensing fabrics. Chem Eng J 325:396–403CrossRef
go back to reference Cai G et al (2018) Large-scale production of highly stretchable CNT/cotton/spandex composite yarn for wearable applications. ACS Appl Mater Interfaces 10(38):32726–32735CrossRefPubMed Cai G et al (2018) Large-scale production of highly stretchable CNT/cotton/spandex composite yarn for wearable applications. ACS Appl Mater Interfaces 10(38):32726–32735CrossRefPubMed
go back to reference Chen L, Guo Z (2018) A facile method to mussel-inspired superhydrophobic thiol-textiles@ polydopamine for oil/water separation. Colloids Surf A 554:253–260CrossRef Chen L, Guo Z (2018) A facile method to mussel-inspired superhydrophobic thiol-textiles@ polydopamine for oil/water separation. Colloids Surf A 554:253–260CrossRef
go back to reference Chen K et al (2017) Fabrication of core–shell Ag@ pDA@ HAp nanoparticles with the ability for controlled release of Ag+ and superior hemocompatibility. RSC Adv 7(47):29368–29377CrossRef Chen K et al (2017) Fabrication of core–shell Ag@ pDA@ HAp nanoparticles with the ability for controlled release of Ag+ and superior hemocompatibility. RSC Adv 7(47):29368–29377CrossRef
go back to reference Cheng Y et al (2015) A stretchable and highly sensitive graphene-based fiber for sensing tensile strain, bending, and torsion. Adv Mater 27(45):7365–7371CrossRefPubMed Cheng Y et al (2015) A stretchable and highly sensitive graphene-based fiber for sensing tensile strain, bending, and torsion. Adv Mater 27(45):7365–7371CrossRefPubMed
go back to reference Di J et al (2016) Carbon-nanotube fibers for wearable devices and smart textiles. Adv Mater 28(47):10529–10538CrossRefPubMed Di J et al (2016) Carbon-nanotube fibers for wearable devices and smart textiles. Adv Mater 28(47):10529–10538CrossRefPubMed
go back to reference Du D et al (2016) Graphene coated nonwoven fabrics as wearable sensors. J Mater Chem C 4(15):3224–3230CrossRef Du D et al (2016) Graphene coated nonwoven fabrics as wearable sensors. J Mater Chem C 4(15):3224–3230CrossRef
go back to reference Hu Y et al (2018) A low-cost, printable, and stretchable strain sensor based on highly conductive elastic composites with tunable sensitivity for human motion monitoring. Nano Res 11(4):1938–1955CrossRef Hu Y et al (2018) A low-cost, printable, and stretchable strain sensor based on highly conductive elastic composites with tunable sensitivity for human motion monitoring. Nano Res 11(4):1938–1955CrossRef
go back to reference Jia X et al (2014) Adhesive polydopamine coated avermectin microcapsules for prolonging foliar pesticide retention. ACS Appl Mater Interfaces 6(22):19552–19558CrossRefPubMed Jia X et al (2014) Adhesive polydopamine coated avermectin microcapsules for prolonging foliar pesticide retention. ACS Appl Mater Interfaces 6(22):19552–19558CrossRefPubMed
go back to reference Kang TJ et al (2010) Electromechanical properties of CNT-coated cotton yarn for electronic textile applications. Smart Mater Struct 20(1):015004CrossRef Kang TJ et al (2010) Electromechanical properties of CNT-coated cotton yarn for electronic textile applications. Smart Mater Struct 20(1):015004CrossRef
go back to reference Li L et al (2017a) Surface micro-dissolution process for embedding carbon nanotubes on cotton fabric as a conductive textile. Cellulose 24(2):1121–1128CrossRef Li L et al (2017a) Surface micro-dissolution process for embedding carbon nanotubes on cotton fabric as a conductive textile. Cellulose 24(2):1121–1128CrossRef
go back to reference Li Q et al (2017b) Reduced graphene oxide functionalized stretchable and multicolor electrothermal chromatic fibers. J Mater Chem C 5(44):11448–11453CrossRef Li Q et al (2017b) Reduced graphene oxide functionalized stretchable and multicolor electrothermal chromatic fibers. J Mater Chem C 5(44):11448–11453CrossRef
go back to reference Li X et al (2018) Wearable strain sensing textile based on one-dimensional stretchable and weavable yarn sensors. Nano Res 11(11):5799–5811CrossRef Li X et al (2018) Wearable strain sensing textile based on one-dimensional stretchable and weavable yarn sensors. Nano Res 11(11):5799–5811CrossRef
go back to reference Li T et al (2019) Materials, structures, and functions for flexible and stretchable biomimetic sensors. Acc Chem Res 52(2):288–296CrossRefPubMed Li T et al (2019) Materials, structures, and functions for flexible and stretchable biomimetic sensors. Acc Chem Res 52(2):288–296CrossRefPubMed
go back to reference Liu Y et al (2008) Functionalization of cotton with carbon nanotubes. J Mater Chem 18(29):3454–3460CrossRef Liu Y et al (2008) Functionalization of cotton with carbon nanotubes. J Mater Chem 18(29):3454–3460CrossRef
go back to reference Liu Y et al (2015) One-step modification of fabrics with bioinspired polydopamine@ octadecylamine nanocapsules for robust and healable self-cleaning performance. Small 11(4):426–431CrossRefPubMed Liu Y et al (2015) One-step modification of fabrics with bioinspired polydopamine@ octadecylamine nanocapsules for robust and healable self-cleaning performance. Small 11(4):426–431CrossRefPubMed
go back to reference MohanáKumar G (2015) Highly efficient CNT functionalized cotton fabrics for flexible/wearable heating applications. RSC Adv 5(14):10697–10702CrossRef MohanáKumar G (2015) Highly efficient CNT functionalized cotton fabrics for flexible/wearable heating applications. RSC Adv 5(14):10697–10702CrossRef
go back to reference Molina J (2016) Graphene-based fabrics and their applications: a review. RSC Adv 6(72):68261–68291CrossRef Molina J (2016) Graphene-based fabrics and their applications: a review. RSC Adv 6(72):68261–68291CrossRef
go back to reference Ryu S et al (2015) Extremely elastic wearable carbon nanotube fiber strain sensor for monitoring of human motion. ACS Nano 9(6):5929–5936CrossRefPubMed Ryu S et al (2015) Extremely elastic wearable carbon nanotube fiber strain sensor for monitoring of human motion. ACS Nano 9(6):5929–5936CrossRefPubMed
go back to reference Samad YA et al (2017) From sewing thread to sensor: Nylon® fiber strain and pressure sensors. Sens Actuators B Chem 240:1083–1090CrossRef Samad YA et al (2017) From sewing thread to sensor: Nylon® fiber strain and pressure sensors. Sens Actuators B Chem 240:1083–1090CrossRef
go back to reference Seyedin S et al (2019) Textile strain sensors: a review of the fabrication technologies, performance evaluation and applications. Mater Horizons 6(2):219–249CrossRef Seyedin S et al (2019) Textile strain sensors: a review of the fabrication technologies, performance evaluation and applications. Mater Horizons 6(2):219–249CrossRef
go back to reference Shim BS et al (2008) Smart electronic yarns and wearable fabrics for human biomonitoring made by carbon nanotube coating with polyelectrolytes. Nano Lett 8(12):4151–4157CrossRefPubMed Shim BS et al (2008) Smart electronic yarns and wearable fabrics for human biomonitoring made by carbon nanotube coating with polyelectrolytes. Nano Lett 8(12):4151–4157CrossRefPubMed
go back to reference Wang C et al (2016a) Carbonized silk fabric for ultrastretchable, highly sensitive, and wearable strain sensors. Adv Mater 28(31):6640–6648CrossRefPubMed Wang C et al (2016a) Carbonized silk fabric for ultrastretchable, highly sensitive, and wearable strain sensors. Adv Mater 28(31):6640–6648CrossRefPubMed
go back to reference Wang Z et al (2016b) Polyurethane/cotton/carbon nanotubes core-spun yarn as high reliability stretchable strain sensor for human motion detection. ACS Appl Mater Interfaces 8(37):24837–24843CrossRefPubMed Wang Z et al (2016b) Polyurethane/cotton/carbon nanotubes core-spun yarn as high reliability stretchable strain sensor for human motion detection. ACS Appl Mater Interfaces 8(37):24837–24843CrossRefPubMed
go back to reference Wang Y et al (2018) Ultra-stretchable, sensitive and durable strain sensors based on polydopamine encapsulated carbon nanotubes/elastic bands. J Mater Chem C 6(30):8160–8170CrossRef Wang Y et al (2018) Ultra-stretchable, sensitive and durable strain sensors based on polydopamine encapsulated carbon nanotubes/elastic bands. J Mater Chem C 6(30):8160–8170CrossRef
go back to reference Yan C et al (2014) Highly stretchable piezoresistive graphene–nanocellulose nanopaper for strain sensors. Adv Mater 26(13):2022–2027CrossRefPubMed Yan C et al (2014) Highly stretchable piezoresistive graphene–nanocellulose nanopaper for strain sensors. Adv Mater 26(13):2022–2027CrossRefPubMed
go back to reference Yan D et al (2016) Polydopamine nanotubes: bio-inspired synthesis, formaldehyde sensing properties and thermodynamic investigation. J Mater Chem A 4(9):3487–3493CrossRef Yan D et al (2016) Polydopamine nanotubes: bio-inspired synthesis, formaldehyde sensing properties and thermodynamic investigation. J Mater Chem A 4(9):3487–3493CrossRef
go back to reference Yang Z et al (2018b) Graphene textile strain sensor with negative resistance variation for human motion detection. ACS Nano 12(9):9134–9141CrossRefPubMed Yang Z et al (2018b) Graphene textile strain sensor with negative resistance variation for human motion detection. ACS Nano 12(9):9134–9141CrossRefPubMed
go back to reference Yin B et al (2017) Highly stretchable, ultrasensitive, and wearable strain sensors based on facilely prepared reduced graphene oxide woven fabrics in an ethanol flame. ACS Appl Mater Interfaces 9(37):32054–32064CrossRefPubMed Yin B et al (2017) Highly stretchable, ultrasensitive, and wearable strain sensors based on facilely prepared reduced graphene oxide woven fabrics in an ethanol flame. ACS Appl Mater Interfaces 9(37):32054–32064CrossRefPubMed
go back to reference Zeng W et al (2014) Fiber-based wearable electronics: a review of materials, fabrication, devices, and applications. Adv Mater 26(31):5310–5336CrossRefPubMed Zeng W et al (2014) Fiber-based wearable electronics: a review of materials, fabrication, devices, and applications. Adv Mater 26(31):5310–5336CrossRefPubMed
go back to reference Zeng L et al (2018) Macroscale porous carbonized polydopamine-modified cotton textile for application as electrode in microbial fuel cells. J Power Sources 376:33–40CrossRef Zeng L et al (2018) Macroscale porous carbonized polydopamine-modified cotton textile for application as electrode in microbial fuel cells. J Power Sources 376:33–40CrossRef
Metadata
Title
Direct dip-coating of carbon nanotubes onto polydopamine-templated cotton fabrics for wearable applications
Authors
Md. Shak Sadi
Junjie Pan
Anchang Xu
Deshan Cheng
Guangming Cai
Xin Wang
Publication date
13-07-2019
Publisher
Springer Netherlands
Published in
Cellulose / Issue 12/2019
Print ISSN: 0969-0239
Electronic ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-019-02628-1

Other articles of this Issue 12/2019

Cellulose 12/2019 Go to the issue