Skip to main content
Top

2020 | OriginalPaper | Chapter

2. Direct Lagrangian Forcing Methods Based on Moving Least Squares

Authors : Marcos Vanella, Elias Balaras

Published in: Immersed Boundary Method

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The application of computational fluid dynamics to complex engineering flow problems necessitates the adoption of numerical algorithms that are accurate, robust and efficient at the same time. These are usually conflicting requirements and there is still debate in the scientific community when it comes to the selection of the best method for a specific field of applications. In this chapter, we will discuss a cost-efficient strategy to simulate fluid flow problems in complex configurations with large boundary displacements and/or deformations. It utilizes a direct forcing, immersed boundary formulation, where the body is represented by a Lagrangian grid, and the equations governing the fluid flow are solved on a structured or block-structured Cartesian grid. The forcing function is evaluated using moving least squares. The main advantage of this strategy compared to other direct-forcing schemes is versatility, as it decouples the local discretization from the computation of the forcing function and, therefore, can be implemented into structured or unstructured codes in a straightforward manner. In addition, it is very robust in dealing with collisions of multiple bodies. The forcing function is built and appropriately scaled based on the contributions of all bodies in the vicinity of an Eulerian point without special treatments.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
go back to reference Akselvoll K, Moin P (1996) An efficient method for temporal integration of the Navier-Stokes equations in confined axisymmetric geometries. J Comput Phys 125(2):454–463MathSciNetMATHCrossRef Akselvoll K, Moin P (1996) An efficient method for temporal integration of the Navier-Stokes equations in confined axisymmetric geometries. J Comput Phys 125(2):454–463MathSciNetMATHCrossRef
go back to reference Armfield S, Street R (2002) An analysis and comparison of the time accuracy of fractional-step methods for the Navier-Stokes equations on staggered grids. Int J Numer Methods Fluids 38(3):255–282MATHCrossRef Armfield S, Street R (2002) An analysis and comparison of the time accuracy of fractional-step methods for the Navier-Stokes equations on staggered grids. Int J Numer Methods Fluids 38(3):255–282MATHCrossRef
go back to reference Balaras E (2004) Modeling complex boundaries using an external force field on fixed Cartesian grids in large-eddy simulations. Comput Fluids 33(3):375–404MATHCrossRef Balaras E (2004) Modeling complex boundaries using an external force field on fixed Cartesian grids in large-eddy simulations. Comput Fluids 33(3):375–404MATHCrossRef
go back to reference Balaras E, Benocci C, Piomelli U (1996) Two-layer approximate boundary conditions for large-eddy simulations. AIAA J 34(6):1111–1119MATHCrossRef Balaras E, Benocci C, Piomelli U (1996) Two-layer approximate boundary conditions for large-eddy simulations. AIAA J 34(6):1111–1119MATHCrossRef
go back to reference Bathe KJ (2007) Finite element procedures. Klaus-Jurgen Bathe, Englewood Cliffs Bathe KJ (2007) Finite element procedures. Klaus-Jurgen Bathe, Englewood Cliffs
go back to reference Bellani G, Byron ML, Collignon AG, Meyer CR, Variano EA (2012) Shape effects on turbulent modulation by large nearly neutrally buoyant particles. J Fluid Mech 712:41–60MathSciNetMATHCrossRef Bellani G, Byron ML, Collignon AG, Meyer CR, Variano EA (2012) Shape effects on turbulent modulation by large nearly neutrally buoyant particles. J Fluid Mech 712:41–60MathSciNetMATHCrossRef
go back to reference Braza M, Chassaing P, Minh HH (1986) Numerical study and physical analysis of the pressure and velocity fields in the near wake of a circular cylinder. J Fluid Mech 165:79–130MathSciNetMATHCrossRef Braza M, Chassaing P, Minh HH (1986) Numerical study and physical analysis of the pressure and velocity fields in the near wake of a circular cylinder. J Fluid Mech 165:79–130MathSciNetMATHCrossRef
go back to reference Carroll PL, Blanquart G (2013) A proposed modification to Lundgren’s physical space velocity forcing method for isotropic turbulence. Phys Fluids 25(10):105114 Carroll PL, Blanquart G (2013) A proposed modification to Lundgren’s physical space velocity forcing method for isotropic turbulence. Phys Fluids 25(10):105114
go back to reference Colonius T, Taira K (2008) A fast immersed boundary method using a nullspace approach and multi-domain far-field boundary conditions. Comput Methods Appl Mech Eng 197(25–28):2131–2146 Colonius T, Taira K (2008) A fast immersed boundary method using a nullspace approach and multi-domain far-field boundary conditions. Comput Methods Appl Mech Eng 197(25–28):2131–2146
go back to reference Constantinescu G, Squires K (2003) LES and DES investigations of turbulent flow over a sphere at Re = 10,000. Flow Turbul Combust 70(1–4):267–298MATHCrossRef Constantinescu G, Squires K (2003) LES and DES investigations of turbulent flow over a sphere at Re = 10,000. Flow Turbul Combust 70(1–4):267–298MATHCrossRef
go back to reference de Tullio MD, Pascazio G (2016) A moving-least-squares immersed boundary method for simulating the fluid-structure interaction of elastic bodies with arbitrary thickness. J Comput Phys 325:201–225MathSciNetMATHCrossRef de Tullio MD, Pascazio G (2016) A moving-least-squares immersed boundary method for simulating the fluid-structure interaction of elastic bodies with arbitrary thickness. J Comput Phys 325:201–225MathSciNetMATHCrossRef
go back to reference Fadlun E, Verzicco R, Orlandi P, Mohd-Yusof J (2000) Combined immersed-boundary finite-difference methods for three-dimensional complex flow simulations. J Comput Phys 161(1):35–60MathSciNetMATHCrossRef Fadlun E, Verzicco R, Orlandi P, Mohd-Yusof J (2000) Combined immersed-boundary finite-difference methods for three-dimensional complex flow simulations. J Comput Phys 161(1):35–60MathSciNetMATHCrossRef
go back to reference Glowinski R, Pan TW, Hesla TI, Joseph DD (1999) A distributed Lagrange multiplier/fictitious domain method for particulate flows. Int J Multiph Flow 25:755–794MathSciNetMATHCrossRef Glowinski R, Pan TW, Hesla TI, Joseph DD (1999) A distributed Lagrange multiplier/fictitious domain method for particulate flows. Int J Multiph Flow 25:755–794MathSciNetMATHCrossRef
go back to reference Glowinski R, Pan TW, Hesla TI, Joseph DD, Periaux J (2000) A fictitious domain approach to the direct numerical simulation of incompressible viscous flow past moving rigid bodies: application to particulate flow. J Comput Phys 169:363–426MathSciNetMATHCrossRef Glowinski R, Pan TW, Hesla TI, Joseph DD, Periaux J (2000) A fictitious domain approach to the direct numerical simulation of incompressible viscous flow past moving rigid bodies: application to particulate flow. J Comput Phys 169:363–426MathSciNetMATHCrossRef
go back to reference Goldstein D, Handler R, Sirovich L (1993) Modeling a no-slip flow boundary with an external force field. J Comput Phys 105:354–366MATHCrossRef Goldstein D, Handler R, Sirovich L (1993) Modeling a no-slip flow boundary with an external force field. J Comput Phys 105:354–366MATHCrossRef
go back to reference Griffith BE, Hornung RD, McQueen DM, Peskin CS (2007) An adaptive, formally second order accurate version of the immersed boundary method. J Comput Phys 223(1):10–49 Griffith BE, Hornung RD, McQueen DM, Peskin CS (2007) An adaptive, formally second order accurate version of the immersed boundary method. J Comput Phys 223(1):10–49
go back to reference Gu W, Chyu C, Rockwell D (1994) Timing of vortex formation from an oscillating cylinder. Phys Fluids 6(11):3677–3682CrossRef Gu W, Chyu C, Rockwell D (1994) Timing of vortex formation from an oscillating cylinder. Phys Fluids 6(11):3677–3682CrossRef
go back to reference Guilmineau E, Queutey P (2002) A numerical simulation of vortex shedding from an oscillating circular cylinder. J Fluid Struct 16(6):773–794CrossRef Guilmineau E, Queutey P (2002) A numerical simulation of vortex shedding from an oscillating circular cylinder. J Fluid Struct 16(6):773–794CrossRef
go back to reference Hou G, Wang J, Layton A (2012) Numerical methods for fluid-structure interaction—a review. Commun Comput Phys 12(2):337–377 Hou G, Wang J, Layton A (2012) Numerical methods for fluid-structure interaction—a review. Commun Comput Phys 12(2):337–377
go back to reference Hughes TJR (2000) The finite element method: linear static and dynamic finite element analysis. Dover Publications, Mineola, NY Hughes TJR (2000) The finite element method: linear static and dynamic finite element analysis. Dover Publications, Mineola, NY
go back to reference Johnson T, Patel V (1999) Flow past a sphere up to a Reynolds number of 300. J Fluid Mech 378:19–70CrossRef Johnson T, Patel V (1999) Flow past a sphere up to a Reynolds number of 300. J Fluid Mech 378:19–70CrossRef
go back to reference Kempe T, Frohlich J (2012) An improved immersed boundary method with direct forcing for the simulation of particle laden flows. J Comput Phys 231(9):3663–3684MathSciNetMATHCrossRef Kempe T, Frohlich J (2012) An improved immersed boundary method with direct forcing for the simulation of particle laden flows. J Comput Phys 231(9):3663–3684MathSciNetMATHCrossRef
go back to reference Kim J, Kim D, Choi H (2001) An immersed-boundary finite-volume method for simulations of flow in complex geometries. J Comput Phys 171(1):132–150MathSciNetMATHCrossRef Kim J, Kim D, Choi H (2001) An immersed-boundary finite-volume method for simulations of flow in complex geometries. J Comput Phys 171(1):132–150MathSciNetMATHCrossRef
go back to reference Krishnan S, Shaqfeh E, Iaccarino G (2017) Fully resolved viscoelastic particulate simulations using unstructured grids. J Comput Phys 338(1):313–338MathSciNetMATHCrossRef Krishnan S, Shaqfeh E, Iaccarino G (2017) Fully resolved viscoelastic particulate simulations using unstructured grids. J Comput Phys 338(1):313–338MathSciNetMATHCrossRef
go back to reference Lai MC, Peskin CS (2000) An immersed boundary method with formal second order accuracy and reduced numerical viscosity. J Comput Phys 160:705–719MathSciNetMATHCrossRef Lai MC, Peskin CS (2000) An immersed boundary method with formal second order accuracy and reduced numerical viscosity. J Comput Phys 160:705–719MathSciNetMATHCrossRef
go back to reference Le D, Khoo B (2017) A moving-least-square immersed boundary method for rigid and deformable boundaries in viscous flow. Commun Comput Phys 22(4):913–934MathSciNetCrossRef Le D, Khoo B (2017) A moving-least-square immersed boundary method for rigid and deformable boundaries in viscous flow. Commun Comput Phys 22(4):913–934MathSciNetCrossRef
go back to reference Lee S (2000) A numerical study of the unsteady wake behind a sphere in a uniform flow at moderate Reynolds numbers. Comput Fluids 29(6):639–667MATHCrossRef Lee S (2000) A numerical study of the unsteady wake behind a sphere in a uniform flow at moderate Reynolds numbers. Comput Fluids 29(6):639–667MATHCrossRef
go back to reference Lee J, Kim J, Choi H, Yang K-S (2011) Sources of spurious force oscillations from an immersed boundary method for moving-body problems. J Comput Phys 230(7):2677–2695MathSciNetMATHCrossRef Lee J, Kim J, Choi H, Yang K-S (2011) Sources of spurious force oscillations from an immersed boundary method for moving-body problems. J Comput Phys 230(7):2677–2695MathSciNetMATHCrossRef
go back to reference Li D, Wei A, Luo K, Fan J (2015) An improved moving least squares reconstruction for immersed boundary method. Int J Numer Methods Eng 104(8):789–804MathSciNetMATHCrossRef Li D, Wei A, Luo K, Fan J (2015) An improved moving least squares reconstruction for immersed boundary method. Int J Numer Methods Eng 104(8):789–804MathSciNetMATHCrossRef
go back to reference Li Z, Ito K (2006) The immersed interface method: numerical solutions of PDEs involving interfaces and irregular domains. Society for Industrial and Applied Mathematics Li Z, Ito K (2006) The immersed interface method: numerical solutions of PDEs involving interfaces and irregular domains. Society for Industrial and Applied Mathematics
go back to reference Li S, Liu WK (2004) Meshfree particle methods. Springer, Berlin, Heidelberg Li S, Liu WK (2004) Meshfree particle methods. Springer, Berlin, Heidelberg
go back to reference Liu GR, Gu YT (2005) An introduction to meshfree methods and their programming. Springer, Netherlands Liu GR, Gu YT (2005) An introduction to meshfree methods and their programming. Springer, Netherlands
go back to reference Luo H, Dai H, de Sousa PJF, Yin B (2012) On the numerical oscillation of the direct-forcing immersed-boundary method for moving boundaries. Comput Fluids 56:61–76MathSciNetMATHCrossRef Luo H, Dai H, de Sousa PJF, Yin B (2012) On the numerical oscillation of the direct-forcing immersed-boundary method for moving boundaries. Comput Fluids 56:61–76MathSciNetMATHCrossRef
go back to reference Mei R (1994) Flow due to an oscillating sphere and an expression for unsteady drag on the sphere at finite Reynolds number. J Fluid Mech 270:133–174 Mei R (1994) Flow due to an oscillating sphere and an expression for unsteady drag on the sphere at finite Reynolds number. J Fluid Mech 270:133–174
go back to reference Mittal R, Dong H, Bozkurttas M, Najjar F, Vargas A, von Loebbecke A (2008) A versatile sharp interface immersed boundary method for incompressible flows with complex boundaries. J Comput Phys 227(10):4825–4852MathSciNetMATHCrossRef Mittal R, Dong H, Bozkurttas M, Najjar F, Vargas A, von Loebbecke A (2008) A versatile sharp interface immersed boundary method for incompressible flows with complex boundaries. J Comput Phys 227(10):4825–4852MathSciNetMATHCrossRef
go back to reference Mohd-Yusof J (1997) Combined immersed boundaries/B-splines methods for simulations of flows in complex geometries. CTR annual research briefs. NASA Ames/Stanford University, Stanford, CA Mohd-Yusof J (1997) Combined immersed boundaries/B-splines methods for simulations of flows in complex geometries. CTR annual research briefs. NASA Ames/Stanford University, Stanford, CA
go back to reference Orlanski I (1976) A simple boundary condition for unbounded hyperbolic flows. J Comput Phys 21(3):251–269MATHCrossRef Orlanski I (1976) A simple boundary condition for unbounded hyperbolic flows. J Comput Phys 21(3):251–269MATHCrossRef
go back to reference Peskin CS (2003) The immersed boundary method. Acta Numer 11:479–517 Peskin CS (2003) The immersed boundary method. Acta Numer 11:479–517
go back to reference Pinelli A, Naqavi IZ, Piomelli U, Favier J (2010) Immersed-boundary methods for general finite-difference and finite-volume Navier-Stokes solvers. J Comput Phys 229(24):9073–9091MathSciNetMATHCrossRef Pinelli A, Naqavi IZ, Piomelli U, Favier J (2010) Immersed-boundary methods for general finite-difference and finite-volume Navier-Stokes solvers. J Comput Phys 229(24):9073–9091MathSciNetMATHCrossRef
go back to reference Posa A, Balaras E (2014) Model-based near-wall reconstructions for immersed-boundary methods. Theor Comput Fluid Dyn 28(4):473–483CrossRef Posa A, Balaras E (2014) Model-based near-wall reconstructions for immersed-boundary methods. Theor Comput Fluid Dyn 28(4):473–483CrossRef
go back to reference Posa A, Vanella M, Balaras E (2017) An adaptive reconstruction for Lagrangian, direct-forcing, immersed-boundary methods. J Comput Phys 351:22–436 Posa A, Vanella M, Balaras E (2017) An adaptive reconstruction for Lagrangian, direct-forcing, immersed-boundary methods. J Comput Phys 351:22–436
go back to reference Seo JH, Mittal R (2011) A sharp-interface immersed boundary method with improved mass conservation and reduced spurious pressure oscillations. J Comput Phys 230(19):7347–7363MathSciNetMATHCrossRef Seo JH, Mittal R (2011) A sharp-interface immersed boundary method with improved mass conservation and reduced spurious pressure oscillations. J Comput Phys 230(19):7347–7363MathSciNetMATHCrossRef
go back to reference Sih B, Yang X, Gin G, He G, Wang S (2019) Wall-modeling for large-eddy simulation of flows around an axisymmetric body using the diffuse-interface immersed boundary method. Appl Math Mech Engl Ed 40:305–320MathSciNetCrossRef Sih B, Yang X, Gin G, He G, Wang S (2019) Wall-modeling for large-eddy simulation of flows around an axisymmetric body using the diffuse-interface immersed boundary method. Appl Math Mech Engl Ed 40:305–320MathSciNetCrossRef
go back to reference Spandan V, Lohse D, de Tullio M, Verzicco R (2018) A fast moving least squares approximation with adaptive Lagrangian mesh refinement for large scale immersed boundary simulations. J Comput Phys 375:228–239MathSciNetMATHCrossRef Spandan V, Lohse D, de Tullio M, Verzicco R (2018) A fast moving least squares approximation with adaptive Lagrangian mesh refinement for large scale immersed boundary simulations. J Comput Phys 375:228–239MathSciNetMATHCrossRef
go back to reference Spedding G, McArthur J (2010) Span efficiencies of wings at low Reynolds numbers. J Aircraft 47(1):120–128CrossRef Spedding G, McArthur J (2010) Span efficiencies of wings at low Reynolds numbers. J Aircraft 47(1):120–128CrossRef
go back to reference Sun M, Xiong Y (2005) Dynamic flight stability of a hovering bumblebee. J Exp Biol 208:447–459CrossRef Sun M, Xiong Y (2005) Dynamic flight stability of a hovering bumblebee. J Exp Biol 208:447–459CrossRef
go back to reference Taylor GK, Thomas ALR (2003) Dynamic flight stability in the desert locust Schistocerca gregaria. J Exp Biol 206:2803–2829CrossRef Taylor GK, Thomas ALR (2003) Dynamic flight stability in the desert locust Schistocerca gregaria. J Exp Biol 206:2803–2829CrossRef
go back to reference Tenneti S, Garg R, Subramaniam S (2011) Drag law for monodisperse gas-solid systems using particle-resolved direct numerical simulation of flow past fixed assemblies of spheres. Int J Multiph Flow 37(9):1072–1092CrossRef Tenneti S, Garg R, Subramaniam S (2011) Drag law for monodisperse gas-solid systems using particle-resolved direct numerical simulation of flow past fixed assemblies of spheres. Int J Multiph Flow 37(9):1072–1092CrossRef
go back to reference Tomboulides AG (1993) Direct and large-eddy simulation of wake flows: flow past a sphere. Ph.D. thesis, Princeton University, Princeton Tomboulides AG (1993) Direct and large-eddy simulation of wake flows: flow past a sphere. Ph.D. thesis, Princeton University, Princeton
go back to reference Uhlmann M (2005) An immersed boundary method with direct forcing for the simulation of particulate flows. J Comput Phys 209(2):448–476MathSciNetMATHCrossRef Uhlmann M (2005) An immersed boundary method with direct forcing for the simulation of particulate flows. J Comput Phys 209(2):448–476MathSciNetMATHCrossRef
go back to reference Van Kan J (1986) A second-order accurate pressure-correction scheme for viscous incompressible flow. SIAM J Sci Stat Comput 7(3):870–891MathSciNetMATHCrossRef Van Kan J (1986) A second-order accurate pressure-correction scheme for viscous incompressible flow. SIAM J Sci Stat Comput 7(3):870–891MathSciNetMATHCrossRef
go back to reference Vanella M (2010) A fluid structure interaction strategy with application to low Reynolds number flapping flight. Ph.D. thesis, Department of Mechanical Engineering, University of Maryland Vanella M (2010) A fluid structure interaction strategy with application to low Reynolds number flapping flight. Ph.D. thesis, Department of Mechanical Engineering, University of Maryland
go back to reference Vanella M, Balaras E (2009) A moving-least-squares reconstruction for embedded-boundary formulations. J Comput Phys 228(18):6617–6628MATHCrossRef Vanella M, Balaras E (2009) A moving-least-squares reconstruction for embedded-boundary formulations. J Comput Phys 228(18):6617–6628MATHCrossRef
go back to reference Vanella M, Rabenold P, Balaras E (2010) A direct-forcing embedded-boundary method with adaptive mesh refinement for fluid-structure interaction problems. J Comput Phys 229(18):6427–6449MathSciNetMATHCrossRef Vanella M, Rabenold P, Balaras E (2010) A direct-forcing embedded-boundary method with adaptive mesh refinement for fluid-structure interaction problems. J Comput Phys 229(18):6427–6449MathSciNetMATHCrossRef
go back to reference Vanella M, Posa A, Balaras E (2014) Adaptive mesh refinement for immersed boundary methods. ASME J Fluids Eng 136(4):040909 Vanella M, Posa A, Balaras E (2014) Adaptive mesh refinement for immersed boundary methods. ASME J Fluids Eng 136(4):040909
go back to reference Vanella M, Wang S, Balaras E (2018) Direct and large-eddy simulations of biological flows. In: Grigoriadis D, Geurts B, Kuerten H, Fröhlich J, Armenio V (eds) Direct and large-eddy simulation X. ERCOFTAC series, vol 24. Springer, Cham Vanella M, Wang S, Balaras E (2018) Direct and large-eddy simulations of biological flows. In: Grigoriadis D, Geurts B, Kuerten H, Fröhlich J, Armenio V (eds) Direct and large-eddy simulation X. ERCOFTAC series, vol 24. Springer, Cham
go back to reference Wan D, Turek S (2007) An efficient multigrid-FEM method for the simulation of solid-liquid two phase flows. J Comput Appl Math 203(2):561–580MathSciNetMATHCrossRef Wan D, Turek S (2007) An efficient multigrid-FEM method for the simulation of solid-liquid two phase flows. J Comput Appl Math 203(2):561–580MathSciNetMATHCrossRef
go back to reference Wang S, Vanella M, Balaras E (2019) A hydrodynamic stress model for simulating turbulence/particle interactions with immersed boundary methods. J Comput Phys 382:240–263MathSciNetCrossRef Wang S, Vanella M, Balaras E (2019) A hydrodynamic stress model for simulating turbulence/particle interactions with immersed boundary methods. J Comput Phys 382:240–263MathSciNetCrossRef
go back to reference Wu JH, Zhang YL, Sun M (2009) Hovering of model insects: simulation by coupling equations of motion with Navier-Stokes equations. J Exp Biol 212:3313–3329CrossRef Wu JH, Zhang YL, Sun M (2009) Hovering of model insects: simulation by coupling equations of motion with Navier-Stokes equations. J Exp Biol 212:3313–3329CrossRef
go back to reference Yang J, Balaras E (2006) An embedded-boundary formulation for large-eddy simulation of turbulent flows interacting with moving boundaries. J Comput Phys 215(1):12–40MathSciNetMATHCrossRef Yang J, Balaras E (2006) An embedded-boundary formulation for large-eddy simulation of turbulent flows interacting with moving boundaries. J Comput Phys 215(1):12–40MathSciNetMATHCrossRef
go back to reference Yang J, Stern F (2015) A non-iterative direct forcing immersed boundary method for strongly-coupled fluid-solid interactions. J Comput Phys 295:779–804MathSciNetMATHCrossRef Yang J, Stern F (2015) A non-iterative direct forcing immersed boundary method for strongly-coupled fluid-solid interactions. J Comput Phys 295:779–804MathSciNetMATHCrossRef
go back to reference Yang J, Preidikman S, Balaras E (2008) A strongly-coupled, embedded-boundary method for fluid-structure interactions of elastically mounted rigid bodies. J Fluids Struct 24:167–182CrossRef Yang J, Preidikman S, Balaras E (2008) A strongly-coupled, embedded-boundary method for fluid-structure interactions of elastically mounted rigid bodies. J Fluids Struct 24:167–182CrossRef
Metadata
Title
Direct Lagrangian Forcing Methods Based on Moving Least Squares
Authors
Marcos Vanella
Elias Balaras
Copyright Year
2020
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-15-3940-4_2

Premium Partners