Skip to main content
Top
Published in: Flow, Turbulence and Combustion 1/2019

28-04-2018

Direct Numerical Simulation of Laminar-Turbulent Transition in a Non-Axisymmetric Stenosis Model for Newtonian vs. Shear-Thinning Non-Newtonian Rheologies

Authors: M. O. Khan, K. Valen-Sendstad, D. A. Steinman

Published in: Flow, Turbulence and Combustion | Issue 1/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Steady inflow through a non-axisymmetric stenotic model at Re = 500-1000 for Newtonian and shear-thinning non-Newtonian rheologies was studied numerically to investigate the experimental evidence of stabilizing effect of shear-thinning fluids. A minimally-dissipative and energy-preserving finite-element based code was used, and results were verified against a higher-order spectral element code. Below a critical Reynolds number (Recrit), both rheology models showed non-stationary and intermittent flow in time, with successive phases of laminar and turbulent regions that were quasi-periodic with long observation times. Using the conventional definition of Reynolds number based on high-shear viscosity, transition was delayed for the shear-thinning model, with Recrit of 760 vs. 700 for the Newtonian rheology, a delay broadly consistent with previous reports. However, using domain-averaged viscosity aposteriori, the Recrit for the shear-thinning model dropped to 710, closer to the Newtonian value. The transition process and the vortical structures for both rheologies were similar, albeit with some differences in the turbulent kinetic energy and evolution of non-stationary perturbations near the transition point. This suggests that previously-reported delays in transition to turbulence for blood vs. Newtonian fluids may be due to rheological factors other than shear-thinning, such as viscoelasticity. Our study also further highlights the challenges of defining non-Newtonian Reynolds numbers for flows in non-trivial geometries.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Caro, C.G., Fitz-Gerald, J.M., Schroter, R.C.: Atheroma and arterial wall shear observation, correlation and proposal of a shear dependent mass transfer mechanism for atherogenesis. Proc. R. Soc. Lond. B Biol. Sci. 177, 109–133 (1971)CrossRef Caro, C.G., Fitz-Gerald, J.M., Schroter, R.C.: Atheroma and arterial wall shear observation, correlation and proposal of a shear dependent mass transfer mechanism for atherogenesis. Proc. R. Soc. Lond. B Biol. Sci. 177, 109–133 (1971)CrossRef
2.
go back to reference Wootton, D.M., Ku, D.N.: Fluid mechanics of vascular systems, diseases, and thrombosis. Annu. Rev. Biomed. Eng. 1, 299–329 (1999)CrossRef Wootton, D.M., Ku, D.N.: Fluid mechanics of vascular systems, diseases, and thrombosis. Annu. Rev. Biomed. Eng. 1, 299–329 (1999)CrossRef
5.
go back to reference Young, D.F.: Fluid mechanics of arterial stenoses. J. Biomech. Eng. 101, 157–175 (1979)CrossRef Young, D.F.: Fluid mechanics of arterial stenoses. J. Biomech. Eng. 101, 157–175 (1979)CrossRef
6.
go back to reference Varghese, S.S., Frankel, S.H., Fischer, P.F.: Direct numerical simulation of stenotic flows. Part 1. Steady flow. J. Fluid. Mech. 582, 253–280 (2007)MathSciNetMATHCrossRef Varghese, S.S., Frankel, S.H., Fischer, P.F.: Direct numerical simulation of stenotic flows. Part 1. Steady flow. J. Fluid. Mech. 582, 253–280 (2007)MathSciNetMATHCrossRef
7.
go back to reference Robertson, A.M., Sequeira, A., Owens, R.G.: Rheological models for blood. In: Formaggia L, Quarteroni, A, Veneziani, A (eds.) Cardiovascular Mathematics, pp 211–241. Springer (2009) Robertson, A.M., Sequeira, A., Owens, R.G.: Rheological models for blood. In: Formaggia L, Quarteroni, A, Veneziani, A (eds.) Cardiovascular Mathematics, pp 211–241. Springer (2009)
8.
go back to reference Forrester, J.H., Young, D.F.: Flow through a converging-diverging tube and its implications in occulsive vascular disease - II. J. Biomech. 3, 307–316 (1970)CrossRef Forrester, J.H., Young, D.F.: Flow through a converging-diverging tube and its implications in occulsive vascular disease - II. J. Biomech. 3, 307–316 (1970)CrossRef
9.
go back to reference Young, D.F., Tsai, F.Y.: Flow characteristics in models of arterial stenoses - I. Steady flow. J. Biomech. 6, 395–410 (1973)CrossRef Young, D.F., Tsai, F.Y.: Flow characteristics in models of arterial stenoses - I. Steady flow. J. Biomech. 6, 395–410 (1973)CrossRef
10.
go back to reference Kim, B.M., Corcoran, W.H.: Experimental measurements of turbulence spectra distal to stenoses. J. Biomech. 7, 335–342 (1974)CrossRef Kim, B.M., Corcoran, W.H.: Experimental measurements of turbulence spectra distal to stenoses. J. Biomech. 7, 335–342 (1974)CrossRef
11.
go back to reference Cassanova, R.A., Giddens, D.P.: Disorder distal to modeled stenoses in steady and pulsatile flow. J. Biomech. 11, 441–453 (1978)CrossRef Cassanova, R.A., Giddens, D.P.: Disorder distal to modeled stenoses in steady and pulsatile flow. J. Biomech. 11, 441–453 (1978)CrossRef
12.
go back to reference Ahmed, S.A., Giddens, D.P.: Velocity measurements in steady flow through axisymmetric stenoses at moderate reynolds numbers. J. Biomech. 16, 505–516 (1983)CrossRef Ahmed, S.A., Giddens, D.P.: Velocity measurements in steady flow through axisymmetric stenoses at moderate reynolds numbers. J. Biomech. 16, 505–516 (1983)CrossRef
13.
go back to reference Vetel, J., Garon, A., Pelletier, D., Farinas, M.I.: Asymmetrey and transition to turbulence in smooth axisymmetric constriction. J. Fluid Mech. 607, 351–386 (2008)MATHCrossRef Vetel, J., Garon, A., Pelletier, D., Farinas, M.I.: Asymmetrey and transition to turbulence in smooth axisymmetric constriction. J. Fluid Mech. 607, 351–386 (2008)MATHCrossRef
14.
go back to reference Griffith, M.D., Leweke, T., Thompson, M.C., Hourigan, K.: Steady inlet flow in stenotic geometric: Convective and absolute instabilities. J. Fluid. Mech. 616, 111–113 (2008)MATHCrossRef Griffith, M.D., Leweke, T., Thompson, M.C., Hourigan, K.: Steady inlet flow in stenotic geometric: Convective and absolute instabilities. J. Fluid. Mech. 616, 111–113 (2008)MATHCrossRef
15.
go back to reference Clark, C: The fluid mechanics of aortic stenosis - I. theory and steady flow experiments. J. Biomech. 9, 521–528 (1976)CrossRef Clark, C: The fluid mechanics of aortic stenosis - I. theory and steady flow experiments. J. Biomech. 9, 521–528 (1976)CrossRef
16.
go back to reference Ahmed, S.A., Giddens, D.P.: Flow disturbance measurements through a constricted tube at moderate reynolds numbers. J. Biomech. 16, 955–963 (1983)CrossRef Ahmed, S.A., Giddens, D.P.: Flow disturbance measurements through a constricted tube at moderate reynolds numbers. J. Biomech. 16, 955–963 (1983)CrossRef
17.
go back to reference Deshpande, M.D., Giddens, D.P.: Turbulence measurements in a constricted tube. J. Fluid. Mech. 97, 65–89 (1980)CrossRef Deshpande, M.D., Giddens, D.P.: Turbulence measurements in a constricted tube. J. Fluid. Mech. 97, 65–89 (1980)CrossRef
18.
go back to reference Khalifa, A.M.A., Giddens, D.P.: Characterization and evolution of poststenotic flow disturbances. J. Biomech. 14, 279–296 (1981)CrossRef Khalifa, A.M.A., Giddens, D.P.: Characterization and evolution of poststenotic flow disturbances. J. Biomech. 14, 279–296 (1981)CrossRef
19.
go back to reference Ahmed, S.A., Giddens, D.P.: Pulsatile poststenotic flow studies with laser doppler anemometry. J. Biomech. 17, 695–705 (1984)CrossRef Ahmed, S.A., Giddens, D.P.: Pulsatile poststenotic flow studies with laser doppler anemometry. J. Biomech. 17, 695–705 (1984)CrossRef
20.
go back to reference Ojha, M., Cobbold, R.S.C., Johnston, K.W., Hummel, R.L.: Turbulence measurements in a constricted tube. J. Fluid Mech. 203, 173–197 (1989)CrossRef Ojha, M., Cobbold, R.S.C., Johnston, K.W., Hummel, R.L.: Turbulence measurements in a constricted tube. J. Fluid Mech. 203, 173–197 (1989)CrossRef
21.
go back to reference Deshpande, M.D., Giddens, D.P., Mabon, R.F.: Steady laminar flow through modelled vascular stenoses. J. Biomech. 9, 165–174 (1976)CrossRef Deshpande, M.D., Giddens, D.P., Mabon, R.F.: Steady laminar flow through modelled vascular stenoses. J. Biomech. 9, 165–174 (1976)CrossRef
22.
go back to reference Lee, J.S., Fung, Y.C.: Flow in locally constricted tubes at low Reynolds numbers. J. App. Mech. 37, 9–16 (1970)MATHCrossRef Lee, J.S., Fung, Y.C.: Flow in locally constricted tubes at low Reynolds numbers. J. App. Mech. 37, 9–16 (1970)MATHCrossRef
23.
go back to reference Varghese, S.S., Frankel, S.H., Fischer, P.F.: Modeling transition to turbulence in eccentric stenotic flows. J. Biomech. Eng. 130, 014,503 (2008)CrossRef Varghese, S.S., Frankel, S.H., Fischer, P.F.: Modeling transition to turbulence in eccentric stenotic flows. J. Biomech. Eng. 130, 014,503 (2008)CrossRef
24.
go back to reference Sherwin, S.J., Blackburn, H.M.: Three-dimensional instabilities and transition of steady and pulsatile axisymmetric stenotic flows. J. Fluid Mech. 533, 297–327 (2005)MathSciNetMATHCrossRef Sherwin, S.J., Blackburn, H.M.: Three-dimensional instabilities and transition of steady and pulsatile axisymmetric stenotic flows. J. Fluid Mech. 533, 297–327 (2005)MathSciNetMATHCrossRef
25.
go back to reference Samuelsson, J., Tammisola, O., Juniper, M.P.: Breaking axi-symmetry in stenotic flows lowers the critical transition Reynolds number. Phys. Fluids 27, 104,103 (2015)CrossRef Samuelsson, J., Tammisola, O., Juniper, M.P.: Breaking axi-symmetry in stenotic flows lowers the critical transition Reynolds number. Phys. Fluids 27, 104,103 (2015)CrossRef
26.
go back to reference Mittal, R., Simmons, S.P., Najjar, F.: Numerical study of pulsatile flow in a constricted channel. J. Fluid Mech. 485, 337–378 (2003)MATHCrossRef Mittal, R., Simmons, S.P., Najjar, F.: Numerical study of pulsatile flow in a constricted channel. J. Fluid Mech. 485, 337–378 (2003)MATHCrossRef
27.
go back to reference Griffith, M.D., Leweke, T., Thompson, M.C., Hourigan, K.: Effect of small asymmetries on axisymmetric stenotic flows. J. Fluid. Mech. 721, R1 (2013)MATHCrossRef Griffith, M.D., Leweke, T., Thompson, M.C., Hourigan, K.: Effect of small asymmetries on axisymmetric stenotic flows. J. Fluid. Mech. 721, R1 (2013)MATHCrossRef
28.
go back to reference Castro, W., Squire, W.: The effect of polymer additives on transition in pipe flows. Appl. Sci. Res. 18, 81–96 (1967)CrossRef Castro, W., Squire, W.: The effect of polymer additives on transition in pipe flows. Appl. Sci. Res. 18, 81–96 (1967)CrossRef
29.
go back to reference Chung, J.S., Graebel,W.P.: Laser anemometer measurements of turbulence in non-newtonian pipe flows. Phys. Fluids 15, 546–554 (1972)CrossRef Chung, J.S., Graebel,W.P.: Laser anemometer measurements of turbulence in non-newtonian pipe flows. Phys. Fluids 15, 546–554 (1972)CrossRef
30.
go back to reference Pereira, A.S., Pinho, F.T.: Turbulent pipe flow characteristics of low molecular weight polymer solutions. J. Non-Newtonian Fluid Mech. 55, 321–344 (1994)CrossRef Pereira, A.S., Pinho, F.T.: Turbulent pipe flow characteristics of low molecular weight polymer solutions. J. Non-Newtonian Fluid Mech. 55, 321–344 (1994)CrossRef
31.
go back to reference Pinho, F.T., Whitelaw, J.H.: Flow of non-newtonian fluids in a pipe. J. Non-Newtonian Fluid Mech. 34, 129–144 (1990)CrossRef Pinho, F.T., Whitelaw, J.H.: Flow of non-newtonian fluids in a pipe. J. Non-Newtonian Fluid Mech. 34, 129–144 (1990)CrossRef
32.
go back to reference Vaseleski, R.C., Metzner, A.B.: Drag reduction in the turbulent flow of fiber suspensions. AIChE J. 20, 301–306 (1974)CrossRef Vaseleski, R.C., Metzner, A.B.: Drag reduction in the turbulent flow of fiber suspensions. AIChE J. 20, 301–306 (1974)CrossRef
33.
go back to reference Draad, A.A., Kuiken, G.D.C., Nieuwstadt, F.T.M.: Laminar-turbulent transition in pipe flow for newtonian and non-newtonian fluids. J. Fluid. Mech. 377, 267–312 (1998)MATHCrossRef Draad, A.A., Kuiken, G.D.C., Nieuwstadt, F.T.M.: Laminar-turbulent transition in pipe flow for newtonian and non-newtonian fluids. J. Fluid. Mech. 377, 267–312 (1998)MATHCrossRef
34.
go back to reference Virk, P.S., Wagger, D.L.: Aspects of mechanisms in type b drag reduction. In: Structure of Turbulence and Drag Reduction, pp. 201–213 (1990) Virk, P.S., Wagger, D.L.: Aspects of mechanisms in type b drag reduction. In: Structure of Turbulence and Drag Reduction, pp. 201–213 (1990)
35.
go back to reference Esmael, A., Nouar, C., Lefevre, A., Kabouya, N.: Transitional flow of a non-newtonian fluid in a pipe: Experimental evidence of weak turbulence induced by shear-thinning behavior. Phys. Fluids. 22(10), 101,701 (2010)CrossRef Esmael, A., Nouar, C., Lefevre, A., Kabouya, N.: Transitional flow of a non-newtonian fluid in a pipe: Experimental evidence of weak turbulence induced by shear-thinning behavior. Phys. Fluids. 22(10), 101,701 (2010)CrossRef
36.
go back to reference Güzel, B, Burghelea, T, Frigaard, I A, Martinez, D M: Observation of laminar–turbulent transition of a yield stress fluid in Hagen-Poiseuille flow. J. Fluid. Mech. 627, 97–128 (2009)MATHCrossRef Güzel, B, Burghelea, T, Frigaard, I A, Martinez, D M: Observation of laminar–turbulent transition of a yield stress fluid in Hagen-Poiseuille flow. J. Fluid. Mech. 627, 97–128 (2009)MATHCrossRef
37.
go back to reference Walker, A M, Johnston, C R, Rival, D E: On the characterization of a non-newtonian blood analog and its response to pulsatile flow downstream of a simplified stenosis. Ann. Biomed. Eng. 42(1), 97–109 (2014)CrossRef Walker, A M, Johnston, C R, Rival, D E: On the characterization of a non-newtonian blood analog and its response to pulsatile flow downstream of a simplified stenosis. Ann. Biomed. Eng. 42(1), 97–109 (2014)CrossRef
38.
go back to reference Biswas, D, Casey, D M, Crowder, D C, Steinman, D A, Yun, Y H, Loth, F: Characterization of transition to turbulence for blood in a straight pipe under steady flow conditions. J. Biomech. Eng. 138(7), 071,001 (2016)CrossRef Biswas, D, Casey, D M, Crowder, D C, Steinman, D A, Yun, Y H, Loth, F: Characterization of transition to turbulence for blood in a straight pipe under steady flow conditions. J. Biomech. Eng. 138(7), 071,001 (2016)CrossRef
39.
go back to reference Nouar, C, Bottaro, A, Brancher, J P: Delaying transition to turbulence in channel flow: Revisiting the stability of shear-thinning fluids. J. Fluid Mech. 592, 177–194 (2007)MATHCrossRef Nouar, C, Bottaro, A, Brancher, J P: Delaying transition to turbulence in channel flow: Revisiting the stability of shear-thinning fluids. J. Fluid Mech. 592, 177–194 (2007)MATHCrossRef
40.
go back to reference Roland, N, Plaut, E, Nouar, C: Petrov–Galerkin computation of nonlinear waves in pipe flow of shear-thinning fluids: First theoretical evidences for a delayed transition. Comput. Fluids 39(9), 1733–1743 (2010)MathSciNetMATHCrossRef Roland, N, Plaut, E, Nouar, C: Petrov–Galerkin computation of nonlinear waves in pipe flow of shear-thinning fluids: First theoretical evidences for a delayed transition. Comput. Fluids 39(9), 1733–1743 (2010)MathSciNetMATHCrossRef
41.
go back to reference Rudman, M, Blackburn, H M: Direct numerical simulation of turbulent non-newtonian flow using a spectral element method. Appl. Math. Model 30(11), 1229–1248 (2006)MATHCrossRef Rudman, M, Blackburn, H M: Direct numerical simulation of turbulent non-newtonian flow using a spectral element method. Appl. Math. Model 30(11), 1229–1248 (2006)MATHCrossRef
42.
go back to reference Rudman, M, Blackburn, H M, Graham, L J W, Pullum, L: Turbulent pipe flow of shear-thinning fluids. J. Non-Newtonian Fluid Mech. 118(1), 33–48 (2004)MATHCrossRef Rudman, M, Blackburn, H M, Graham, L J W, Pullum, L: Turbulent pipe flow of shear-thinning fluids. J. Non-Newtonian Fluid Mech. 118(1), 33–48 (2004)MATHCrossRef
43.
go back to reference Chikkadi, V, Sameen, A, Govindarajan, R: Preventing transition to turbulence: a viscosity stratification does not always help. Phys. Rev. E 95(26), 264,504 (2005) Chikkadi, V, Sameen, A, Govindarajan, R: Preventing transition to turbulence: a viscosity stratification does not always help. Phys. Rev. E 95(26), 264,504 (2005)
44.
go back to reference Singh, J, Rudman, M, Blackburn, H, Chryss, A, Pullum, L, Graham, L: The importance of rheology characterization in predicting turbulent pipe flow of generalized newtonian fluids. J. Non-Newtonian Fluid Mech. 232, 11–21 (2016)MathSciNetCrossRef Singh, J, Rudman, M, Blackburn, H, Chryss, A, Pullum, L, Graham, L: The importance of rheology characterization in predicting turbulent pipe flow of generalized newtonian fluids. J. Non-Newtonian Fluid Mech. 232, 11–21 (2016)MathSciNetCrossRef
45.
go back to reference Wall, D P, Wilson, S K: The linear stability of channel flow of fluid with temperature-dependent viscosity. J. Fluid Mech. 323, 107–132 (1996)MATHCrossRef Wall, D P, Wilson, S K: The linear stability of channel flow of fluid with temperature-dependent viscosity. J. Fluid Mech. 323, 107–132 (1996)MATHCrossRef
46.
go back to reference Gijsen, F J H, van de Vosse, F N, Janssen, J D: The influence of the non-newtonian properties of blood on the flow in large arteries: steady flow in a carotid bifurcation model. J. Biomech. 32(6), 601–608 (1999)CrossRef Gijsen, F J H, van de Vosse, F N, Janssen, J D: The influence of the non-newtonian properties of blood on the flow in large arteries: steady flow in a carotid bifurcation model. J. Biomech. 32(6), 601–608 (1999)CrossRef
47.
go back to reference Lee, S W, Steinman, D A: On the relative importance of rheology for image-based CFD models of the carotid bifurcation. J. Biomech. Eng. 129(2), 273–278 (2007)CrossRef Lee, S W, Steinman, D A: On the relative importance of rheology for image-based CFD models of the carotid bifurcation. J. Biomech. Eng. 129(2), 273–278 (2007)CrossRef
48.
go back to reference Han, S I, Marseille, O, Gehlen, C, Blümich, B: Rheology of blood by NMR. J. Magn. Reson. 152(1), 87–94 (2001)CrossRef Han, S I, Marseille, O, Gehlen, C, Blümich, B: Rheology of blood by NMR. J. Magn. Reson. 152(1), 87–94 (2001)CrossRef
49.
go back to reference Khan, M O, Chnafa, C, Gallo, D, Molinari, F, Morbiducci, U, Steinman, D A, Valen-Sendstad, K: On the quantification and visualization of transient periodic instabilities in pulsatile flows. J. Biomech. 52, 179–182 (2017)CrossRef Khan, M O, Chnafa, C, Gallo, D, Molinari, F, Morbiducci, U, Steinman, D A, Valen-Sendstad, K: On the quantification and visualization of transient periodic instabilities in pulsatile flows. J. Biomech. 52, 179–182 (2017)CrossRef
50.
go back to reference Mortensen, M, Valen-Sendstad, K: Oasis: A high-level/high-performance open source Navier-stokes solver. Comput. Phys. Commun. 188, 177–188 (2015)MATHCrossRef Mortensen, M, Valen-Sendstad, K: Oasis: A high-level/high-performance open source Navier-stokes solver. Comput. Phys. Commun. 188, 177–188 (2015)MATHCrossRef
51.
go back to reference Khan, M, Valen-Sendstad, K, Steinman, D: Narrowing the expertise gap for predicting intracranial aneurysm hemodynamics: Impact of solver numerics versus mesh and time-step resolution. Am. J. Neuroradiol. 36(7), 1310–1316 (2015)CrossRef Khan, M, Valen-Sendstad, K, Steinman, D: Narrowing the expertise gap for predicting intracranial aneurysm hemodynamics: Impact of solver numerics versus mesh and time-step resolution. Am. J. Neuroradiol. 36(7), 1310–1316 (2015)CrossRef
52.
go back to reference Khan, M, Steinman, D, Valen-Sendstad, K: Non-newtonian versus numerical rheology: practical impact of shear-thinning on the prediction of stable and unstable flows in intracranial aneurysms. Int. J. Numer. Methods Biomed. Eng. 33(7) (2016) Khan, M, Steinman, D, Valen-Sendstad, K: Non-newtonian versus numerical rheology: practical impact of shear-thinning on the prediction of stable and unstable flows in intracranial aneurysms. Int. J. Numer. Methods Biomed. Eng. 33(7) (2016)
53.
go back to reference Khan, M O, Valen-Sendstad, K, Steinman, D A: Cerebral aneurysm blood flow simulations: There’s solver settings and then there’s solver settings. J. Biomech. 61, 280 (2017)CrossRef Khan, M O, Valen-Sendstad, K, Steinman, D A: Cerebral aneurysm blood flow simulations: There’s solver settings and then there’s solver settings. J. Biomech. 61, 280 (2017)CrossRef
54.
go back to reference Berg, P, Roloff, C, Beuing, O, Voss, S, Sugiyama, S I, Aristokleous, N, Anayiotos, A S, Ashton, N, Revell, A, Bressloff, N W, et al: The computational fluid dynamics rupture challenge 2013—Phase II: Variability of hemodynamic simulations in two intracranial aneurysms. J. Biomech. Eng. 137(12), 121,008 (2015)CrossRef Berg, P, Roloff, C, Beuing, O, Voss, S, Sugiyama, S I, Aristokleous, N, Anayiotos, A S, Ashton, N, Revell, A, Bressloff, N W, et al: The computational fluid dynamics rupture challenge 2013—Phase II: Variability of hemodynamic simulations in two intracranial aneurysms. J. Biomech. Eng. 137(12), 121,008 (2015)CrossRef
55.
go back to reference Simo, J C, Armero, F: Unconditional stability and long-term behavior of transient algorithms for the incompressible Navier-stokes and euler equations. Comput. Methods Appl. Mech. Eng. 111(1), 111–154 (1994)MathSciNetMATHCrossRef Simo, J C, Armero, F: Unconditional stability and long-term behavior of transient algorithms for the incompressible Navier-stokes and euler equations. Comput. Methods Appl. Mech. Eng. 111(1), 111–154 (1994)MathSciNetMATHCrossRef
57.
go back to reference Nobach, H, Tropea, C, Cordier, L, Bonnet, J P, Delville, J, Lewalle, J, Farge, M, Schneider, K, Adrian, R: Review of some fundamentals of data processing. In: Tropea, C, Yarin, A, Foss, J F (eds.) Springer handbook of experimental fluid mechanics, pp 1337–1398. Springer (2007) Nobach, H, Tropea, C, Cordier, L, Bonnet, J P, Delville, J, Lewalle, J, Farge, M, Schneider, K, Adrian, R: Review of some fundamentals of data processing. In: Tropea, C, Yarin, A, Foss, J F (eds.) Springer handbook of experimental fluid mechanics, pp 1337–1398. Springer (2007)
58.
go back to reference Karniadakis, G, Sherwin, S: Spectral/hp Element Methods for Computational Fluid Dynamics. Oxford University Press (2013) Karniadakis, G, Sherwin, S: Spectral/hp Element Methods for Computational Fluid Dynamics. Oxford University Press (2013)
59.
go back to reference Loken, C, Gruner, D, Groer, L, Peltier, R, Bunn, N, Craig, M, Henriques, T, Dempsey, J, Yu, C H, Chen, J, Dursi, L J, Chong, J, Northrup, S, Pinto, J, Knecht, N, von Zon, R: Scinet: Lessons learned from building a power-efficient top-20 system and data centre. J. Phys. Conf. Series 256(1), 012,026 (2010)CrossRef Loken, C, Gruner, D, Groer, L, Peltier, R, Bunn, N, Craig, M, Henriques, T, Dempsey, J, Yu, C H, Chen, J, Dursi, L J, Chong, J, Northrup, S, Pinto, J, Knecht, N, von Zon, R: Scinet: Lessons learned from building a power-efficient top-20 system and data centre. J. Phys. Conf. Series 256(1), 012,026 (2010)CrossRef
60.
go back to reference Molla, M M, Paul, M C: Les of non-newtonian physiological blood flow in a model of arterial stenosis. Med. Eng. Phys. 34(8), 1079–1087 (2012)CrossRef Molla, M M, Paul, M C: Les of non-newtonian physiological blood flow in a model of arterial stenosis. Med. Eng. Phys. 34(8), 1079–1087 (2012)CrossRef
61.
go back to reference Grinberg, L, Yakhot, A, Karniadakis, G E: Analyzing transient turbulence in a stenosed carotid artery by proper orthogonal decomposition. Ann. Biomed. Eng. 37 (11), 2200–2217 (2009)CrossRef Grinberg, L, Yakhot, A, Karniadakis, G E: Analyzing transient turbulence in a stenosed carotid artery by proper orthogonal decomposition. Ann. Biomed. Eng. 37 (11), 2200–2217 (2009)CrossRef
62.
go back to reference Klebanoff, P S, Tidstrom, K, Sargent, L: The three-dimensional nature of boundary-layer instability. J. Fluid Mech. 12(1), 1–34 (1962)MATHCrossRef Klebanoff, P S, Tidstrom, K, Sargent, L: The three-dimensional nature of boundary-layer instability. J. Fluid Mech. 12(1), 1–34 (1962)MATHCrossRef
63.
go back to reference Zhou, J., Adrian, R.J., Balachandar, S., Kendall, T.: Mechanisms for generating coherent packets of hairpin vortices in channel flow. J. Fluid Mech. 387, 353–396 (1999)MathSciNetMATHCrossRef Zhou, J., Adrian, R.J., Balachandar, S., Kendall, T.: Mechanisms for generating coherent packets of hairpin vortices in channel flow. J. Fluid Mech. 387, 353–396 (1999)MathSciNetMATHCrossRef
64.
go back to reference Antiga, L., Steinman, D.A.: Rethinking turbulence in blood. Biorheology 46 (2), 77–81 (2009) Antiga, L., Steinman, D.A.: Rethinking turbulence in blood. Biorheology 46 (2), 77–81 (2009)
Metadata
Title
Direct Numerical Simulation of Laminar-Turbulent Transition in a Non-Axisymmetric Stenosis Model for Newtonian vs. Shear-Thinning Non-Newtonian Rheologies
Authors
M. O. Khan
K. Valen-Sendstad
D. A. Steinman
Publication date
28-04-2018
Publisher
Springer Netherlands
Published in
Flow, Turbulence and Combustion / Issue 1/2019
Print ISSN: 1386-6184
Electronic ISSN: 1573-1987
DOI
https://doi.org/10.1007/s10494-018-9905-7

Other articles of this Issue 1/2019

Flow, Turbulence and Combustion 1/2019 Go to the issue

Premium Partners