Skip to main content
Top

2018 | OriginalPaper | Chapter

Direct Numerical Simulation Study of Lean Hydrogen/Air Premixed Combustion

Authors : Rohit Saini, Ashoke De, S. Gokulakrishnan

Published in: Energy for Propulsion

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Turbulence-chemistry interaction is known to play a vital role in changing the characteristics of a flame surface. It changes evolution, propagation, annihilation, local extinction characteristics of the flame front. This study seeks to understand how turbulence interaction affects flame surface geometry and propagation of turbulent premixed H2/Air flames in a three-dimensional configuration. 3D Direct Numerical Simulation (DNS) study of premixed turbulent H2/Air flames has been carried out using an inflow–outflow configuration at moderate Reynolds number (Re) with a fairly detailed chemistry. The simulations are conducted at different parametric conditions in conjunction with differential diffusion (non-uniform Lewis number) effects. The topology of the flame surface is interpreted in terms of its propagation and statistics. Statistics related to the flame surface area and the correlations between the curvature and the gradient of temperature are obtained from the computed fields. It is found that the displacement speed increases with the negative mean curvature, while it correlates well for high turbulent cases and scattered for low turbulent cases. It is also observed that the diffusion effects become more dominant for deciding the flame structure when the mean flow is lower (low Re case). Further, the unsteady effects of tangential strain rate, curvature on flame propagation, and heat release rate are also investigated. Later, effects of prominent species and radicals are described to correlate the production of the maximum heat release rate in the lower temperature regions.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference N. Babkovskaia, N.E. Haugen, A. Brandenburg, A high-order public domain code for direct numerical simulations of turbulent combustion. J. Comput. Phys. 230(1), 1–2 (2011)CrossRef N. Babkovskaia, N.E. Haugen, A. Brandenburg, A high-order public domain code for direct numerical simulations of turbulent combustion. J. Comput. Phys. 230(1), 1–2 (2011)CrossRef
2.
go back to reference H.G. Im, P.G. Arias, S. Chaudhuri, H.A. Uranakara, Direct numerical simulations of statistically stationary turbulent premixed flames. Combust. Sci. Technol. 188(8), 1182–1198 (2016)CrossRef H.G. Im, P.G. Arias, S. Chaudhuri, H.A. Uranakara, Direct numerical simulations of statistically stationary turbulent premixed flames. Combust. Sci. Technol. 188(8), 1182–1198 (2016)CrossRef
3.
go back to reference C.K. Law, Dynamics of stretched flames. in Symposium (international) on Combustion, vol. 22, no. 1, (1989), pp. 1381–1402CrossRef C.K. Law, Dynamics of stretched flames. in Symposium (international) on Combustion, vol. 22, no. 1, (1989), pp. 1381–1402CrossRef
4.
go back to reference P. Clavin, Dynamic behavior of premixed flame fronts in laminar and turbulent flows. Prog. Energy Combust. 11(1), 1–59 (1985)CrossRef P. Clavin, Dynamic behavior of premixed flame fronts in laminar and turbulent flows. Prog. Energy Combust. 11(1), 1–59 (1985)CrossRef
5.
go back to reference T. Poinsot, D. Veynante, S. Candel, Diagrams of premixed turbulent combustion based on direct simulation. in Symposium (international) on Combustion, vol. 23, no. 1, (1991), pp. 613–619CrossRef T. Poinsot, D. Veynante, S. Candel, Diagrams of premixed turbulent combustion based on direct simulation. in Symposium (international) on Combustion, vol. 23, no. 1, (1991), pp. 613–619CrossRef
6.
go back to reference S. Kadowaki, T. Hasegawa, Numerical simulation of dynamics of premixed flames: flame instability and vortex–flame interaction. Prog. Energy Combust. 31(3), 193–241 (2005)CrossRef S. Kadowaki, T. Hasegawa, Numerical simulation of dynamics of premixed flames: flame instability and vortex–flame interaction. Prog. Energy Combust. 31(3), 193–241 (2005)CrossRef
7.
go back to reference V. Sankaran, S. Menon, Structure of premixed turbulent flames in the thin-reaction-zones regime. Proc. Combust. Inst. 28(1), 203–209 (2000)CrossRef V. Sankaran, S. Menon, Structure of premixed turbulent flames in the thin-reaction-zones regime. Proc. Combust. Inst. 28(1), 203–209 (2000)CrossRef
8.
go back to reference V. Sankaran, S. Menon, Subgrid combustion modeling of 3-D premixed flames in the thin-reaction-zone regime. Proc. Combust. Inst. 30(1), 575–582 (2005)CrossRef V. Sankaran, S. Menon, Subgrid combustion modeling of 3-D premixed flames in the thin-reaction-zone regime. Proc. Combust. Inst. 30(1), 575–582 (2005)CrossRef
9.
go back to reference H.N. Najm, P.S. Wyckoff, Premixed flame response to unsteady strain rate and curvature. Combust. Flame 110(1–2), 92IN595-4IN6112 (1997)CrossRef H.N. Najm, P.S. Wyckoff, Premixed flame response to unsteady strain rate and curvature. Combust. Flame 110(1–2), 92IN595-4IN6112 (1997)CrossRef
10.
go back to reference A.N. Lipatnikov, J. Chomiak, Molecular transport effects on turbulent flame propagation and structure. Prog. Energy Combust. 31(1), 1–73 (2005)CrossRef A.N. Lipatnikov, J. Chomiak, Molecular transport effects on turbulent flame propagation and structure. Prog. Energy Combust. 31(1), 1–73 (2005)CrossRef
11.
go back to reference A.N. Lipatnikov, J. Chomiak, Effects of premixed flames on turbulence and turbulent scalar transport. Prog. Energy Combust. 36(1), 1–02 (2010)CrossRef A.N. Lipatnikov, J. Chomiak, Effects of premixed flames on turbulence and turbulent scalar transport. Prog. Energy Combust. 36(1), 1–02 (2010)CrossRef
12.
go back to reference G.H. Markstein (ed.), Nonsteady Flame Propagation: AGARDograph (Elsevier, 2014) G.H. Markstein (ed.), Nonsteady Flame Propagation: AGARDograph (Elsevier, 2014)
13.
go back to reference P. Clavin, G. Joulin, Premixed flames in large scale and high intensity turbulent flow. J. Phys. Lett Paris 44(1), 1–2 (1983)CrossRef P. Clavin, G. Joulin, Premixed flames in large scale and high intensity turbulent flow. J. Phys. Lett Paris 44(1), 1–2 (1983)CrossRef
14.
go back to reference M. Matalon, B.J. Matkowsky, Flames as gasdynamic discontinuities. J. Fluid Mech. 124, 239–259 (1982)CrossRef M. Matalon, B.J. Matkowsky, Flames as gasdynamic discontinuities. J. Fluid Mech. 124, 239–259 (1982)CrossRef
15.
go back to reference N. Chakraborty, R.S. Cant, Influence of Lewis number on curvature effects in turbulent premixed flame propagation in the thin reaction zones regime. Phys. Fluids 17(10), 105105 (2005)CrossRef N. Chakraborty, R.S. Cant, Influence of Lewis number on curvature effects in turbulent premixed flame propagation in the thin reaction zones regime. Phys. Fluids 17(10), 105105 (2005)CrossRef
16.
go back to reference N. Chakraborty, N. Swaminathan, Influence of the Damköhler number on turbulence-scalar interaction in premixed flames. I. Physical insight. Phys. Fluids 19(4), 045103 (2007)CrossRef N. Chakraborty, N. Swaminathan, Influence of the Damköhler number on turbulence-scalar interaction in premixed flames. I. Physical insight. Phys. Fluids 19(4), 045103 (2007)CrossRef
17.
go back to reference M. Baum, T.J. Poinsot, D.C. Haworth, N. Darabiha, Direct numerical simulation of H 2/O 2/N 2 flames with complex chemistry in two-dimensional turbulent flows. J. Fluid Mech. 281, 1–32 (1994)CrossRef M. Baum, T.J. Poinsot, D.C. Haworth, N. Darabiha, Direct numerical simulation of H 2/O 2/N 2 flames with complex chemistry in two-dimensional turbulent flows. J. Fluid Mech. 281, 1–32 (1994)CrossRef
18.
go back to reference H. Wang, K. Luo, S. Lu, J. Fan, Direct numerical simulation and analysis of a hydrogen/air swirling premixed flame in a micro combustor. Int. J. Hydrog. Energy 36(21), 13838–13849 (2011)CrossRef H. Wang, K. Luo, S. Lu, J. Fan, Direct numerical simulation and analysis of a hydrogen/air swirling premixed flame in a micro combustor. Int. J. Hydrog. Energy 36(21), 13838–13849 (2011)CrossRef
19.
go back to reference P.E. Hamlington, A.Y. Poludnenko, E.S. Oran, Interactions between turbulence and flames in premixed reacting flows. Phys. Fluids 23(12), 125111 (2011)CrossRef P.E. Hamlington, A.Y. Poludnenko, E.S. Oran, Interactions between turbulence and flames in premixed reacting flows. Phys. Fluids 23(12), 125111 (2011)CrossRef
20.
go back to reference J.B. Chen, H.G. Im, Stretch effects on the burning velocity of turbulent premixed hydrogen/air flames. Proc. Combust. Inst. 28(1), 211–218 (2000)CrossRef J.B. Chen, H.G. Im, Stretch effects on the burning velocity of turbulent premixed hydrogen/air flames. Proc. Combust. Inst. 28(1), 211–218 (2000)CrossRef
21.
go back to reference J. Jiang, X. Jiang, M. Zhu, A computational study of preferential diffusion and scalar transport in nonpremixed hydrogen-air flames. Int. J. Hydrog. Energy 40(45), 15709–15722 (2015)CrossRef J. Jiang, X. Jiang, M. Zhu, A computational study of preferential diffusion and scalar transport in nonpremixed hydrogen-air flames. Int. J. Hydrog. Energy 40(45), 15709–15722 (2015)CrossRef
22.
go back to reference K.R. Dinesh, X. Jiang, J.A. Van Oijen, R.J. Bastiaans, L.P. De Goey, Hydrogen-enriched nonpremixed jet flames: effects of preferential diffusion. Int. J. Hydrog. Energy 38(11), 4848–4863 (2013)CrossRef K.R. Dinesh, X. Jiang, J.A. Van Oijen, R.J. Bastiaans, L.P. De Goey, Hydrogen-enriched nonpremixed jet flames: effects of preferential diffusion. Int. J. Hydrog. Energy 38(11), 4848–4863 (2013)CrossRef
23.
go back to reference K.R. Dinesh, H. Shalaby, K.H. Luo, J.A. van Oijen, D. Thévenin, High hydrogen content syngas fuel burning in lean premixed spherical flames at elevated pressures: effects of preferential diffusion. Int. J. Hydrog. Energy 41(40), 18231–18249 (2016)CrossRef K.R. Dinesh, H. Shalaby, K.H. Luo, J.A. van Oijen, D. Thévenin, High hydrogen content syngas fuel burning in lean premixed spherical flames at elevated pressures: effects of preferential diffusion. Int. J. Hydrog. Energy 41(40), 18231–18249 (2016)CrossRef
24.
go back to reference C. Han, D.O. Lignell, E.R. Hawkes, J.H. Chen, H. Wang, Examination of the effect of differential molecular diffusion in DNS of turbulent non-premixed flames. Int. J. Hydrog. Energy (2017) C. Han, D.O. Lignell, E.R. Hawkes, J.H. Chen, H. Wang, Examination of the effect of differential molecular diffusion in DNS of turbulent non-premixed flames. Int. J. Hydrog. Energy (2017)
25.
go back to reference H.A. Uranakara, S. Chaudhuri, H.L. Dave, P.G. Arias, H.G. Im, A flame particle tracking analysis of turbulence-chemistry interaction in hydrogen-air premixed flames. Combust. Flame 163, 220–240 (2016)CrossRef H.A. Uranakara, S. Chaudhuri, H.L. Dave, P.G. Arias, H.G. Im, A flame particle tracking analysis of turbulence-chemistry interaction in hydrogen-air premixed flames. Combust. Flame 163, 220–240 (2016)CrossRef
26.
go back to reference J. Li, Z. Zhao, A. Kazakov, F.L. Dryer, An updated comprehensive kinetic model of hydrogen combustion. Int. J. Chem. Kinet. 36(10), 566–575 (2004)CrossRef J. Li, Z. Zhao, A. Kazakov, F.L. Dryer, An updated comprehensive kinetic model of hydrogen combustion. Int. J. Chem. Kinet. 36(10), 566–575 (2004)CrossRef
27.
go back to reference T. Poinsot, D. Veynante, Theoretical and Numerical Combustion. (RT Edwards, Inc., 2005) T. Poinsot, D. Veynante, Theoretical and Numerical Combustion. (RT Edwards, Inc., 2005)
29.
go back to reference N. Babkovskaia, N.E. Haugen, A. Brandenburg, A high-order public domain code for direct numerical simulations of turbulent combustion. J. Comput. Phys. 230(1), 1–2 (2011)CrossRef N. Babkovskaia, N.E. Haugen, A. Brandenburg, A high-order public domain code for direct numerical simulations of turbulent combustion. J. Comput. Phys. 230(1), 1–2 (2011)CrossRef
30.
go back to reference S.M. Candel, T.J. Poinsot, Flame stretch and the balance equation for the flame area. Combust. Sci. Technol. 70(1–3), 1–5 (1990)CrossRef S.M. Candel, T.J. Poinsot, Flame stretch and the balance equation for the flame area. Combust. Sci. Technol. 70(1–3), 1–5 (1990)CrossRef
31.
go back to reference C. Altantzis, C.E. Frouzakis, A.G. Tomboulides, K. Boulouchos, Direct numerical simulation of circular expanding premixed flames in a lean quiescent hydrogen-air mixture: phenomenology and detailed flame front analysis. Combust. Flame 162(2), 331–344 (2015)CrossRef C. Altantzis, C.E. Frouzakis, A.G. Tomboulides, K. Boulouchos, Direct numerical simulation of circular expanding premixed flames in a lean quiescent hydrogen-air mixture: phenomenology and detailed flame front analysis. Combust. Flame 162(2), 331–344 (2015)CrossRef
32.
go back to reference N. Chakraborty, R.S. Cant, Effects of strain rate and curvature on surface density function transport in turbulent premixed flames in the thin reaction zones regime. Phys. Fluids 17(6), 065108 (2005)CrossRef N. Chakraborty, R.S. Cant, Effects of strain rate and curvature on surface density function transport in turbulent premixed flames in the thin reaction zones regime. Phys. Fluids 17(6), 065108 (2005)CrossRef
33.
go back to reference A.J. Aspden, M.S. Day, J.B. Bell, Turbulence-chemistry interaction in lean premixed hydrogen combustion. Proc. Combust. Inst. 35(2), 1321–1329 (2015)CrossRef A.J. Aspden, M.S. Day, J.B. Bell, Turbulence-chemistry interaction in lean premixed hydrogen combustion. Proc. Combust. Inst. 35(2), 1321–1329 (2015)CrossRef
34.
go back to reference H. Carlsson, R. Yu, X.S. Bai, Direct numerical simulation of lean premixed CH4/air and H2/air flames at high Karlovitz numbers. Int. J. Hydrog. Energy 39(35), 20216–20232 (2014)CrossRef H. Carlsson, R. Yu, X.S. Bai, Direct numerical simulation of lean premixed CH4/air and H2/air flames at high Karlovitz numbers. Int. J. Hydrog. Energy 39(35), 20216–20232 (2014)CrossRef
Metadata
Title
Direct Numerical Simulation Study of Lean Hydrogen/Air Premixed Combustion
Authors
Rohit Saini
Ashoke De
S. Gokulakrishnan
Copyright Year
2018
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-10-7473-8_11