Skip to main content
Top
Published in: Cellulose 10/2019

28-05-2019 | Original Research

Direct screen printing of single-faced conductive cotton fabrics for strain sensing, electrical heating and color changing

Authors: Md. Shak Sadi, Mengyun Yang, Lei Luo, Deshan Cheng, Guangming Cai, Xin Wang

Published in: Cellulose | Issue 10/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A simple but effective method of developing multifunctional wearable cotton fabrics was achieved via screen printing of carbon nanotube (CNT) ink on one side of a weft knitted cotton fabrics. Scanning electron microscopy was employed to investigate the morphology of the CNT/Cotton Composite fabric (CCCF). The deposition of conductive CNT paste has brought electric conductivity (50.75 Ω/sq) to CCCF. The electromechanical performance of the CCCF was evaluated, and the CCCF showed great stability and flexibility in terms of strain sensing. The CCCF was demonstrated to sense different human activities such as speaking, drinking, writing, and bending of finger and wrist. The developed CCCF also exhibited excellent electrothermal performance with the potential to be used as an electric heater. Color changing performance was generated by screen printing thermochromic inks on the back side of CCCF. The flexible strain sensors, electric heaters, and color-changing textiles made from CCCF are promising candidates as smart textiles to be used as wearable electronic devices, cold weather conditioners, and smart displays.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
go back to reference Alimohammadi F et al (2013) Functional cellulose fibers via polycarboxylic acid/carbon nanotube composite coating. J Coat Technol Res 10(1):123–132CrossRef Alimohammadi F et al (2013) Functional cellulose fibers via polycarboxylic acid/carbon nanotube composite coating. J Coat Technol Res 10(1):123–132CrossRef
go back to reference Arapov K et al (2016) Conductive screen printing inks by gelation of graphene dispersions. Adv Funct Mater 26(4):586–593CrossRef Arapov K et al (2016) Conductive screen printing inks by gelation of graphene dispersions. Adv Funct Mater 26(4):586–593CrossRef
go back to reference Choi C et al (2018) Weavable asymmetric carbon nanotube yarn supercapacitor for electronic textiles. RSC Adv 8(24):13112–13120CrossRef Choi C et al (2018) Weavable asymmetric carbon nanotube yarn supercapacitor for electronic textiles. RSC Adv 8(24):13112–13120CrossRef
go back to reference Das C, Krishnamoorthy K (2016) Flexible microsupercapacitors using silk and cotton substrates. ACS Appl Mater Interfaces 8(43):29504–29510CrossRefPubMed Das C, Krishnamoorthy K (2016) Flexible microsupercapacitors using silk and cotton substrates. ACS Appl Mater Interfaces 8(43):29504–29510CrossRefPubMed
go back to reference Denneulin A et al (2011) Substrate pre-treatment of flexible material for printed electronics with carbon nanotube based ink. Appl Surf Sci 257(8):3645–3651CrossRef Denneulin A et al (2011) Substrate pre-treatment of flexible material for printed electronics with carbon nanotube based ink. Appl Surf Sci 257(8):3645–3651CrossRef
go back to reference Di J et al (2016) Carbon-nanotube fibers for wearable devices and smart textiles. Adv Mater 28(47):10529–10538CrossRefPubMed Di J et al (2016) Carbon-nanotube fibers for wearable devices and smart textiles. Adv Mater 28(47):10529–10538CrossRefPubMed
go back to reference Govaert F, Vanneste M (2014) Preparation and application of conductive textile coatings filled with honeycomb structured carbon nanotubes. J Nanomater 2014:13CrossRef Govaert F, Vanneste M (2014) Preparation and application of conductive textile coatings filled with honeycomb structured carbon nanotubes. J Nanomater 2014:13CrossRef
go back to reference Gui Q et al (2017) A skin-inspired integrated sensor for synchronous monitoring of multiparameter signals. Adv Funct Mater 27(36):1702050CrossRef Gui Q et al (2017) A skin-inspired integrated sensor for synchronous monitoring of multiparameter signals. Adv Funct Mater 27(36):1702050CrossRef
go back to reference He Y et al (2015) A self-healing electronic sensor based on thermal-sensitive fluids. Adv Mater 27(31):4622–4627CrossRefPubMed He Y et al (2015) A self-healing electronic sensor based on thermal-sensitive fluids. Adv Mater 27(31):4622–4627CrossRefPubMed
go back to reference He X et al (2017) Transparent electrode based on silver nanowires and polyimide for film heater and flexible solar cell. Materials 10(12):1362CrossRefPubMedCentral He X et al (2017) Transparent electrode based on silver nanowires and polyimide for film heater and flexible solar cell. Materials 10(12):1362CrossRefPubMedCentral
go back to reference Hong S et al (2015) Highly stretchable and transparent metal nanowire heater for wearable electronics applications. Adv Mater 27(32):4744–4751CrossRefPubMed Hong S et al (2015) Highly stretchable and transparent metal nanowire heater for wearable electronics applications. Adv Mater 27(32):4744–4751CrossRefPubMed
go back to reference Hyun WJ et al (2015) High-resolution patterning of graphene by screen printing with a silicon stencil for highly flexible printed electronics. Adv Mater 27(1):109–115CrossRefPubMed Hyun WJ et al (2015) High-resolution patterning of graphene by screen printing with a silicon stencil for highly flexible printed electronics. Adv Mater 27(1):109–115CrossRefPubMed
go back to reference Ilanchezhiyan P et al (2015) Highly efficient CNT functionalized cotton fabrics for flexible/wearable heating applications. RSC Adv 5(14):10697–10702CrossRef Ilanchezhiyan P et al (2015) Highly efficient CNT functionalized cotton fabrics for flexible/wearable heating applications. RSC Adv 5(14):10697–10702CrossRef
go back to reference Jang J et al (2017) Rapid production of large-area, transparent and stretchable electrodes using metal nanofibers as wirelessly operated wearable heaters. NPG Asia Mater 9(9):e432CrossRef Jang J et al (2017) Rapid production of large-area, transparent and stretchable electrodes using metal nanofibers as wirelessly operated wearable heaters. NPG Asia Mater 9(9):e432CrossRef
go back to reference Jia H et al (2015) Integrating ultra-thermal-sensitive fluids into elastomers for multifunctional flexible sensors. Adv Electron Mater 1(3):1500029CrossRef Jia H et al (2015) Integrating ultra-thermal-sensitive fluids into elastomers for multifunctional flexible sensors. Adv Electron Mater 1(3):1500029CrossRef
go back to reference Koo H et al (2015) Scalability of carbon-nanotube-based thin film transistors for flexible electronic devices manufactured using an all roll-to-roll gravure printing system. Sci Rep 5:14459CrossRefPubMedPubMedCentral Koo H et al (2015) Scalability of carbon-nanotube-based thin film transistors for flexible electronic devices manufactured using an all roll-to-roll gravure printing system. Sci Rep 5:14459CrossRefPubMedPubMedCentral
go back to reference Krucińska I et al (2011) The use of carbon nanotubes in textile printing. J Appl Polym Sci 121(1):483–490CrossRef Krucińska I et al (2011) The use of carbon nanotubes in textile printing. J Appl Polym Sci 121(1):483–490CrossRef
go back to reference Krucinska I et al (2014) Printed textiles with chemical sensor properties. Fibre Text East Euro 22(4):68 Krucinska I et al (2014) Printed textiles with chemical sensor properties. Fibre Text East Euro 22(4):68
go back to reference Lee J et al (2015a) Conductive fiber-based ultrasensitive textile pressure sensor for wearable electronics. Adv Mater 27(15):2433–2439CrossRefPubMed Lee J et al (2015a) Conductive fiber-based ultrasensitive textile pressure sensor for wearable electronics. Adv Mater 27(15):2433–2439CrossRefPubMed
go back to reference Li X et al (2018) Wearable strain sensing textile based on one-dimensional stretchable and weavable yarn sensors. Nano Res 11(11):5799CrossRef Li X et al (2018) Wearable strain sensing textile based on one-dimensional stretchable and weavable yarn sensors. Nano Res 11(11):5799CrossRef
go back to reference Metters JP et al (2011) New directions in screen printed electroanalytical sensors: an overview of recent developments. Analyst 136(6):1067–1076CrossRefPubMed Metters JP et al (2011) New directions in screen printed electroanalytical sensors: an overview of recent developments. Analyst 136(6):1067–1076CrossRefPubMed
go back to reference Nuramdhani I et al (2018) Electrochemical impedance analysis of a PEDOT: PSS-based textile energy storage device. Materials 11(1):48CrossRef Nuramdhani I et al (2018) Electrochemical impedance analysis of a PEDOT: PSS-based textile energy storage device. Materials 11(1):48CrossRef
go back to reference Park JJ et al (2015) Highly stretchable and wearable graphene strain sensors with controllable sensitivity for human motion monitoring. ACS Appl Mater Interfaces 7(11):6317–6324CrossRefPubMed Park JJ et al (2015) Highly stretchable and wearable graphene strain sensors with controllable sensitivity for human motion monitoring. ACS Appl Mater Interfaces 7(11):6317–6324CrossRefPubMed
go back to reference Shengbo S et al (2018) Highly sensitive wearable strain sensor based on silver nanowires and nanoparticles. Nanotechnology 29(25):255202CrossRefPubMed Shengbo S et al (2018) Highly sensitive wearable strain sensor based on silver nanowires and nanoparticles. Nanotechnology 29(25):255202CrossRefPubMed
go back to reference Song JW, Kim YS, Yoon YH, Lee ES, Han C-S, Cho Y, Kim D, Kim J, Lee N, Ko YG, Jung HT, Kim SH (2009) The production of transparent carbon nanotube field emitters using inkjet printing. Phys E Low Dimens Syst Nanostruct 42(8):1513–1516CrossRef Song JW, Kim YS, Yoon YH, Lee ES, Han C-S, Cho Y, Kim D, Kim J, Lee N, Ko YG, Jung HT, Kim SH (2009) The production of transparent carbon nanotube field emitters using inkjet printing. Phys E Low Dimens Syst Nanostruct 42(8):1513–1516CrossRef
go back to reference Wang L-L et al (2009) Electromagnetic interference shielding effectiveness of carbon-based materials prepared by screen printing. Carbon 47(8):1905–1910CrossRef Wang L-L et al (2009) Electromagnetic interference shielding effectiveness of carbon-based materials prepared by screen printing. Carbon 47(8):1905–1910CrossRef
go back to reference Wang R et al (2010) Microstructures and electrical conductance of silver nanocrystalline thin films on flexible polymer substrates. Surf Coat Technol 204(8):1206–1210CrossRef Wang R et al (2010) Microstructures and electrical conductance of silver nanocrystalline thin films on flexible polymer substrates. Surf Coat Technol 204(8):1206–1210CrossRef
go back to reference Zahid M et al (2017) Strain-responsive mercerized conductive cotton fabrics based on PEDOT: PSS/graphene. Mater Des 135:213–222CrossRef Zahid M et al (2017) Strain-responsive mercerized conductive cotton fabrics based on PEDOT: PSS/graphene. Mater Des 135:213–222CrossRef
go back to reference Zhang M et al (2017) Weft-knitted fabric for a highly stretchable and low-voltage wearable heater. Adv Electron Mater 3(9):1700193CrossRef Zhang M et al (2017) Weft-knitted fabric for a highly stretchable and low-voltage wearable heater. Adv Electron Mater 3(9):1700193CrossRef
Metadata
Title
Direct screen printing of single-faced conductive cotton fabrics for strain sensing, electrical heating and color changing
Authors
Md. Shak Sadi
Mengyun Yang
Lei Luo
Deshan Cheng
Guangming Cai
Xin Wang
Publication date
28-05-2019
Publisher
Springer Netherlands
Published in
Cellulose / Issue 10/2019
Print ISSN: 0969-0239
Electronic ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-019-02526-6

Other articles of this Issue 10/2019

Cellulose 10/2019 Go to the issue