Skip to main content
Top
Published in: Metallurgist 11-12/2022

27-05-2022

Directional Hot Isostatic Pressing of Ti6Al4V–SiC Composite with Elements Prepared by Selective Laser Melting Technology

Authors: E. R. Guseinov, P. V. Petrovsky, A. Ya. Travyanov, A. S. Aleshenko, P. Yu. Sokolov, A. O. Lagutin

Published in: Metallurgist | Issue 11-12/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The process of directional hot isostatic pressing (HIP) of Ti6Al4V-SiC composite is studied in this work. Samples of locally reinforced titanium alloy Ti6Al4V billet are selected, the elements of which are obtained using selective laser melting technology. Physical and computer modeling of a titanium matrix reinforced with SiC fiber treated with HIP is provided. As a result of the study HIP regimes and geometric parameters of a shell are established with which uniform consolidation of a VT6 alloy matrix is provided.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference H. Bikas, P. Stavropoulos, and G. Chryssolouris, “Additive manufacturing methods and modeling approaches: a critical review,” Int. J. Adv. Manuf. Technol., 83, 389–405 (2016).CrossRef H. Bikas, P. Stavropoulos, and G. Chryssolouris, “Additive manufacturing methods and modeling approaches: a critical review,” Int. J. Adv. Manuf. Technol., 83, 389–405 (2016).CrossRef
2.
go back to reference Wohlers Report 2016: 3D Printing and Additive Manufacturing State of the Industry, Annual Worldwide Progress Report. Fort Collins, Wohlers Associates (2016). Wohlers Report 2016: 3D Printing and Additive Manufacturing State of the Industry, Annual Worldwide Progress Report. Fort Collins, Wohlers Associates (2016).
3.
go back to reference M. A. Zlenko, M. V. Nagaitsev, and V. M. Dovbysh, Additive Technologies in Engineering [in Russian], GNTs RF FGUP NAMI, Moscow (2015). M. A. Zlenko, M. V. Nagaitsev, and V. M. Dovbysh, Additive Technologies in Engineering [in Russian], GNTs RF FGUP NAMI, Moscow (2015).
4.
go back to reference A. Y. Nalivaiko, D. Y. Ozherelkov, A. N. Arnautov, S. V. Zmanovsky, A. A. Osipenkova, and A. A. Gromov, “Selective laser melting of aluminum-alumina powder composites obtained by hydrothermal oxidation method,” Appl. Physics A, 126, 871 (2020).CrossRef A. Y. Nalivaiko, D. Y. Ozherelkov, A. N. Arnautov, S. V. Zmanovsky, A. A. Osipenkova, and A. A. Gromov, “Selective laser melting of aluminum-alumina powder composites obtained by hydrothermal oxidation method,” Appl. Physics A, 126, 871 (2020).CrossRef
5.
go back to reference P. Petrovsky, V. Chevirikin, P. Sokolov, and A. Davidenko, “Dependence of the structure and properties of 03KH16N15M3 steel on the geometry of cellular structures obtained by the selective laser melting method,” Chern. Metally, 3, 49–53 (2019). P. Petrovsky, V. Chevirikin, P. Sokolov, and A. Davidenko, “Dependence of the structure and properties of 03KH16N15M3 steel on the geometry of cellular structures obtained by the selective laser melting method,” Chern. Metally, 3, 49–53 (2019).
6.
go back to reference V. S. Sufiiarov, A. A. Popovich, E. V. Borisov, and I. A. Polozov, “Selective laser melting of Ti6Al4V for gas turbine components manufacturing,” Non-Ferrous Metals, 2, 21–24 (2015).CrossRef V. S. Sufiiarov, A. A. Popovich, E. V. Borisov, and I. A. Polozov, “Selective laser melting of Ti6Al4V for gas turbine components manufacturing,” Non-Ferrous Metals, 2, 21–24 (2015).CrossRef
7.
go back to reference S. Wenbo, M. Yu’e, H. Wei, Z. Weihong, and Q. Xudong, “Effects of build direction on tensile and fatigue performance of selective laser melting Ti6Al4V titanium alloy,” Intern. J. of Fatigue, 130, 105260, 1–11 (2020). S. Wenbo, M. Yu’e, H. Wei, Z. Weihong, and Q. Xudong, “Effects of build direction on tensile and fatigue performance of selective laser melting Ti6Al4V titanium alloy,” Intern. J. of Fatigue, 130, 105260, 1–11 (2020).
8.
go back to reference H. Attar, M. Bönisch, M. Calin, L. Zhang, S. Scudino, and J. Eckert, “Selective laser melting of in situ titanium–titanium boride composites: Processing, microstructure and mechanical properties,” Acta Materialia, 76, 13–22 (2014).CrossRef H. Attar, M. Bönisch, M. Calin, L. Zhang, S. Scudino, and J. Eckert, “Selective laser melting of in situ titanium–titanium boride composites: Processing, microstructure and mechanical properties,” Acta Materialia, 76, 13–22 (2014).CrossRef
9.
go back to reference S. Dadbakhsh, R. Mertens, K. Vanmeensel, G. Ji, and J. Kruth , “In situ transformations during SLM of an ultra-strong TiC reinforced Ti composite,” Sci Rep., 10, 1–12 (2020).CrossRef S. Dadbakhsh, R. Mertens, K. Vanmeensel, G. Ji, and J. Kruth , “In situ transformations during SLM of an ultra-strong TiC reinforced Ti composite,” Sci Rep., 10, 1–12 (2020).CrossRef
10.
go back to reference N. Kaufmann, M. Imran, T. M. Wischeropp, C. Emmelmann, S. Siddique, and F. Walther, “Influence of process parameters on the quality of aluminium alloy EN AW 7075 using selective laser melting (SLM),” Physics Procedia, 83, 918–926 (2016).CrossRef N. Kaufmann, M. Imran, T. M. Wischeropp, C. Emmelmann, S. Siddique, and F. Walther, “Influence of process parameters on the quality of aluminium alloy EN AW 7075 using selective laser melting (SLM),” Physics Procedia, 83, 918–926 (2016).CrossRef
11.
go back to reference A. G. Beresnev and I M. Razumovskii, “Hot isostatic compaction for additive production,” Additivnye Tekhnologii, No. 4, 44–48 (2017). A. G. Beresnev and I M. Razumovskii, “Hot isostatic compaction for additive production,” Additivnye Tekhnologii, No. 4, 44–48 (2017).
12.
go back to reference M. Khomutov, P. Potapkin, V. Cheverikin, P. Petrovskiy, A. Travyanov, I. Logachev, A. Sova, and I. Smurov, “Effect of hot isostatic pressing on structure and properties of intermetallic NiAl–Cr–Mo alloy produced by selective laser melting,” Intermetallics, 120, 106766, 1–10 (2020). M. Khomutov, P. Potapkin, V. Cheverikin, P. Petrovskiy, A. Travyanov, I. Logachev, A. Sova, and I. Smurov, “Effect of hot isostatic pressing on structure and properties of intermetallic NiAl–Cr–Mo alloy produced by selective laser melting,” Intermetallics, 120, 106766, 1–10 (2020).
13.
go back to reference Yu. Yu. Kaplanskii, A. A. Zaitsev, E. A. Levashov, P. A. Loginov, and Zh. A. Sentyurina, “NiAl based alloy produced by HIP and SLM of pre-alloyed spherical powders. Evolution of the structure and mechanical behavior at high temperatures,” Mat. Sci. and Eng. A, 717, 48–59 (2020).CrossRef Yu. Yu. Kaplanskii, A. A. Zaitsev, E. A. Levashov, P. A. Loginov, and Zh. A. Sentyurina, “NiAl based alloy produced by HIP and SLM of pre-alloyed spherical powders. Evolution of the structure and mechanical behavior at high temperatures,” Mat. Sci. and Eng. A, 717, 48–59 (2020).CrossRef
14.
go back to reference P. Petrovskiy, A. Travyanov, V. Cheverikin, A. Chereshneva, A. Sova, and I. Smurov, “Effect of encapsulated hot isostatic pressing on properties of Ti6Al4V deposits produced by cold spray,” Intern. J. of Advanced Manufacturing Technology, 107, 437–449 (2020).CrossRef P. Petrovskiy, A. Travyanov, V. Cheverikin, A. Chereshneva, A. Sova, and I. Smurov, “Effect of encapsulated hot isostatic pressing on properties of Ti6Al4V deposits produced by cold spray,” Intern. J. of Advanced Manufacturing Technology, 107, 437–449 (2020).CrossRef
15.
go back to reference A. I. Dekhtyar, I.V. Moiseev, V. V. Nevdacha, and D. G. Savvakin, “Structure-phase transformation and mechanical properties of titanium alloys, prepared by powder metallurgy after hot isostatic compaction,” Fiz. Tekhnika Vysokikh Davlenii, No. 4, 90–102 (2012). A. I. Dekhtyar, I.V. Moiseev, V. V. Nevdacha, and D. G. Savvakin, “Structure-phase transformation and mechanical properties of titanium alloys, prepared by powder metallurgy after hot isostatic compaction,” Fiz. Tekhnika Vysokikh Davlenii, No. 4, 90–102 (2012).
16.
go back to reference S. V. Ageev and V. L. Girshov, “Hot isostatic compaction in powder metallurgy,” Metalloobrabotka, No. 4, 56–60 (2015). S. V. Ageev and V. L. Girshov, “Hot isostatic compaction in powder metallurgy,” Metalloobrabotka, No. 4, 56–60 (2015).
17.
go back to reference C. Chen, Y. Xie, X. Yan, S. Yin, H. Fukanuma, R. Huang, R. Zhao, J. Wang, Z. Ren, M. Liu, and H. Liao, “Effect of hot isostatic pressing (HIP) on microstructure and mechanical properties of Ti6Al4V alloy fabricated by cold spray additive manufacturing,” Additive Manufacturing, 27, 595–605 (2019).CrossRef C. Chen, Y. Xie, X. Yan, S. Yin, H. Fukanuma, R. Huang, R. Zhao, J. Wang, Z. Ren, M. Liu, and H. Liao, “Effect of hot isostatic pressing (HIP) on microstructure and mechanical properties of Ti6Al4V alloy fabricated by cold spray additive manufacturing,” Additive Manufacturing, 27, 595–605 (2019).CrossRef
18.
go back to reference I. O. Leushin, A. S. Romanov, L. I. Leushina, and P. M. Yavtushenko, “Structural elements of metal powder hot isostatic pressed capsules,” Teoriya Tekhnol. Metall. Proizvodstva, No 3, 26–30 (2020). I. O. Leushin, A. S. Romanov, L. I. Leushina, and P. M. Yavtushenko, “Structural elements of metal powder hot isostatic pressed capsules,” Teoriya Tekhnol. Metall. Proizvodstva, No 3, 26–30 (2020).
19.
go back to reference H. Masuo, Y. Tanaka, S. Morokoshi, H. Yagura, T. Uchida, Y. Yamamoto, and Y. Murakami, “Influence of defects, surface roughness and HIP on the fatigue strength of Ti-6Al-4V manufactured by additive manufacturing,” Intern. J. of Fatigue, 117, 163–179 (2018).CrossRef H. Masuo, Y. Tanaka, S. Morokoshi, H. Yagura, T. Uchida, Y. Yamamoto, and Y. Murakami, “Influence of defects, surface roughness and HIP on the fatigue strength of Ti-6Al-4V manufactured by additive manufacturing,” Intern. J. of Fatigue, 117, 163–179 (2018).CrossRef
20.
go back to reference K. I. Portnoi, S. E. Salibekov, I. L. Svetlov, et al., Composite Material Structure and Properties [in Russian], Mashinostroenie, Moscow (1079). K. I. Portnoi, S. E. Salibekov, I. L. Svetlov, et al., Composite Material Structure and Properties [in Russian], Mashinostroenie, Moscow (1079).
21.
go back to reference B. Song, S. Dong, P. Coddet, G. Zhou, S. Ouyang, H. Liao, and C. Coddet, “Microstructure and tensile behavior of hybrid nanomicro SiC reinforced iron matrix composites produced by selective laser melting,” J. of Alloys and Compounds, 579, 415–421 (2012).CrossRef B. Song, S. Dong, P. Coddet, G. Zhou, S. Ouyang, H. Liao, and C. Coddet, “Microstructure and tensile behavior of hybrid nanomicro SiC reinforced iron matrix composites produced by selective laser melting,” J. of Alloys and Compounds, 579, 415–421 (2012).CrossRef
22.
go back to reference A. A. Pechnikov and T. A. Telenkova, “Locally reinforced cast composite objects with an aluminum matrix,” Izv. MGTU MAMI, Seriya 2, No. 1, 40–41 (2014).CrossRef A. A. Pechnikov and T. A. Telenkova, “Locally reinforced cast composite objects with an aluminum matrix,” Izv. MGTU MAMI, Seriya 2, No. 1, 40–41 (2014).CrossRef
23.
go back to reference L. Wang, T. Chen, and S. Wang, “Microstructural characteristics and mechanical properties of carbon nanotube reinforced AlSi10Mg composites fabricated by selective laser melting,” Optik, 143, 173–179 (2017).CrossRef L. Wang, T. Chen, and S. Wang, “Microstructural characteristics and mechanical properties of carbon nanotube reinforced AlSi10Mg composites fabricated by selective laser melting,” Optik, 143, 173–179 (2017).CrossRef
24.
go back to reference B. AlMangour, Y. Kim, D. Grzesiak, and K. Lee, “Novel TiB2 -reinforced 316L stainless steel nanocomposites with excellent room and high-temperature yield strength developed by additive manufacturing. Composites Part B,” Engineering, 156, 51–63 (2019). B. AlMangour, Y. Kim, D. Grzesiak, and K. Lee, “Novel TiB2 -reinforced 316L stainless steel nanocomposites with excellent room and high-temperature yield strength developed by additive manufacturing. Composites Part B,” Engineering, 156, 51–63 (2019).
25.
go back to reference Y. Kwon, D. Allen, and R. Talreja, Multiscale Modeling and Simulation of Composite Materials and Structures, Springer, US (2008).CrossRef Y. Kwon, D. Allen, and R. Talreja, Multiscale Modeling and Simulation of Composite Materials and Structures, Springer, US (2008).CrossRef
Metadata
Title
Directional Hot Isostatic Pressing of Ti6Al4V–SiC Composite with Elements Prepared by Selective Laser Melting Technology
Authors
E. R. Guseinov
P. V. Petrovsky
A. Ya. Travyanov
A. S. Aleshenko
P. Yu. Sokolov
A. O. Lagutin
Publication date
27-05-2022
Publisher
Springer US
Published in
Metallurgist / Issue 11-12/2022
Print ISSN: 0026-0894
Electronic ISSN: 1573-8892
DOI
https://doi.org/10.1007/s11015-022-01293-3

Other articles of this Issue 11-12/2022

Metallurgist 11-12/2022 Go to the issue

Premium Partners