Skip to main content
Top

2014 | OriginalPaper | Chapter

Discontinuous Galerkin for the Radiative Transport Equation

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This note presents some recent results regarding the approximation of the linear radiative transfer equation using discontinuous Galerkin methods. The locking effect occurring in the diffusion limit with the upwind numerical flux is investigated and a correction technique is proposed.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
The term “flux” is used in two different contexts. In the radiation transport context, we use the terms “angular flux” and “scalar flux.” In the DG context, we use the notion of “numerical flux.” These two notions are unfortunately unrelated but commonly employed in the radiation transport and DG literature, respectively. To avoid confusion, we always try to use the proper adjective in this paper.
 
Literature
[1]
go back to reference M. L. Adams. Discontinuous finite element methods in thick diffusive problems. Nucl. Sci. Eng., 137:298–333, 2001. M. L. Adams. Discontinuous finite element methods in thick diffusive problems. Nucl. Sci. Eng., 137:298–333, 2001.
[2]
go back to reference B. Ayuso and L. D. Marini. Discontinuous Galerkin methods for advection-diffusion-reaction problems. SIAM J. Numer. Anal., 47(2): 1391–1420, 2009.MathSciNetCrossRefMATH B. Ayuso and L. D. Marini. Discontinuous Galerkin methods for advection-diffusion-reaction problems. SIAM J. Numer. Anal., 47(2): 1391–1420, 2009.MathSciNetCrossRefMATH
[3]
go back to reference I. Babuška and M. Suri. On locking and robustness in the finite element method. SIAM J. Numer. Anal., 29(5):1261–1293, 1992.MathSciNetCrossRefMATH I. Babuška and M. Suri. On locking and robustness in the finite element method. SIAM J. Numer. Anal., 29(5):1261–1293, 1992.MathSciNetCrossRefMATH
[4]
go back to reference S. Chandrasekhar. Radiative Transfer. Oxford University Press, 1950. S. Chandrasekhar. Radiative Transfer. Oxford University Press, 1950.
[5]
go back to reference R. Dautray and J.-L. Lions. Mathematical Analysis and Numerical Methods for Science and Technology. Vol. 5. Evolution problems, I. Springer-Verlag, Berlin, Germany, 1992. ISBN 3-540-50205-X; 3-540-66101-8. R. Dautray and J.-L. Lions. Mathematical Analysis and Numerical Methods for Science and Technology. Vol. 5. Evolution problems, I. Springer-Verlag, Berlin, Germany, 1992. ISBN 3-540-50205-X; 3-540-66101-8.
[6]
go back to reference A. Ern and J.-L. Guermond. Discontinuous Galerkin methods for Friedrichs’ systems. I. General theory. SIAM J. Numer. Anal., 44(2): 753–778, 2006. A. Ern and J.-L. Guermond. Discontinuous Galerkin methods for Friedrichs’ systems. I. General theory. SIAM J. Numer. Anal., 44(2): 753–778, 2006.
[7]
go back to reference J.-L. Guermond and G. Kanschat. Asymptotic analysis of upwind discontinuous Galerkin approximation of the radiative transport equation in the diffusive limit. SIAM J. Numer. Anal., 48(1):53–78, 2010.MathSciNetCrossRefMATH J.-L. Guermond and G. Kanschat. Asymptotic analysis of upwind discontinuous Galerkin approximation of the radiative transport equation in the diffusive limit. SIAM J. Numer. Anal., 48(1):53–78, 2010.MathSciNetCrossRefMATH
[8]
go back to reference E. W. Larsen. Deterministic transport methods. Technical Report LA-9533-PR, Los Alamos Scientific Laboratory, Los Alamos, NM, 1982. E. W. Larsen. Deterministic transport methods. Technical Report LA-9533-PR, Los Alamos Scientific Laboratory, Los Alamos, NM, 1982.
[9]
go back to reference E. W. Larsen. On numerical solutions of transport problems in the diffusion limit. Nucl. Sci. Engr., 83:90–99, 1983. E. W. Larsen. On numerical solutions of transport problems in the diffusion limit. Nucl. Sci. Engr., 83:90–99, 1983.
[10]
go back to reference E. W. Larsen and J. B. Keller. Asymptotic solution of neutron transport problems for small mean free paths. J. Mathematical Phys., 15:75–81, 1974.MathSciNetCrossRef E. W. Larsen and J. B. Keller. Asymptotic solution of neutron transport problems for small mean free paths. J. Mathematical Phys., 15:75–81, 1974.MathSciNetCrossRef
[11]
go back to reference E. W. Larsen and J. E. Morel. Asymptotic solutions of numerical transport problems in optically thick, diffusive regimes. II. J. Comput. Phys., 83(1):212–236, 1989. E. W. Larsen and J. E. Morel. Asymptotic solutions of numerical transport problems in optically thick, diffusive regimes. II. J. Comput. Phys., 83(1):212–236, 1989.
[12]
go back to reference E. W. Larsen, J. E. Morel, and W. F. Miller, Jr. Asymptotic solutions of numerical transport problems in optically thick, diffusive regimes. J. Comput. Phys., 69(2):283–324, 1987.MathSciNetCrossRefMATH E. W. Larsen, J. E. Morel, and W. F. Miller, Jr. Asymptotic solutions of numerical transport problems in optically thick, diffusive regimes. J. Comput. Phys., 69(2):283–324, 1987.MathSciNetCrossRefMATH
[13]
go back to reference P. Lesaint and P.-A. Raviart. On a finite element method for solving the neutron transport equation. In Mathematical Aspects of Finite Elements in Partial Differential Equations, pages 89–123. Publication No. 33. Math. Res. Center, Univ. of Wisconsin-Madison, Academic Press, New York, 1974. P. Lesaint and P.-A. Raviart. On a finite element method for solving the neutron transport equation. In Mathematical Aspects of Finite Elements in Partial Differential Equations, pages 89–123. Publication No. 33. Math. Res. Center, Univ. of Wisconsin-Madison, Academic Press, New York, 1974.
[14]
go back to reference F. Malvagi and G. C. Pomraning. Initial and boundary conditions for diffusive linear transport problems. J. Math. Phys., 32(3):805–820, 1991.MathSciNetCrossRefMATH F. Malvagi and G. C. Pomraning. Initial and boundary conditions for diffusive linear transport problems. J. Math. Phys., 32(3):805–820, 1991.MathSciNetCrossRefMATH
[15]
go back to reference J. C. Ragusa, J.-L. Guermond, and G. Kanschat. A robust S N -DG-approximation for radiation transport in optically thick and diffusive regimes. J. Comput. Phys., 231(4):1947–1962, 2012.MathSciNetCrossRefMATH J. C. Ragusa, J.-L. Guermond, and G. Kanschat. A robust S N -DG-approximation for radiation transport in optically thick and diffusive regimes. J. Comput. Phys., 231(4):1947–1962, 2012.MathSciNetCrossRefMATH
[16]
go back to reference W. Reed and T. Hill. Triangular mesh methods for the neutron transport equation. Technical Report LA-UR-73-479, Los Alamos Scientific Laboratory, Los Alamos, NM, 1973. W. Reed and T. Hill. Triangular mesh methods for the neutron transport equation. Technical Report LA-UR-73-479, Los Alamos Scientific Laboratory, Los Alamos, NM, 1973.
Metadata
Title
Discontinuous Galerkin for the Radiative Transport Equation
Authors
Jean-Luc Guermond
Guido Kanschat
Jean C. Ragusa
Copyright Year
2014
DOI
https://doi.org/10.1007/978-3-319-01818-8_7

Premium Partner