Skip to main content
Top
Published in:
Cover of the book

2020 | OriginalPaper | Chapter

Discrete Element Methods: Basics and Applications in Engineering

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A computational approach is presented in this contribution that allows a direct numerical simulation of 3D particulate movements. The given approach is based on the Discrete Element Method (DEM) The particle properties are constitutively described by specific models that act at contact points. The equations of motion will be solved by appropriate time marching algorithms. Additionally coupling schemes with the Finite Element Method (FEM) are discussed for the numerical treatment of particle-solid and particle-fluid interaction. The presented approach will be verified by computational results and compared with those of the literature. Finally, the method is applied for the simulation of different engineering applications using computers with parallel architecture.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Footnotes
1
This factor A can also be used as a fitting parameter within specific simulations—like quasistatic predictions of granular material behaviour—to damp oscillations.
 
2
Analytical solution for the trajectory:
\(\tilde{x}_{3,\max }=\displaystyle \frac{(v_0\sin \alpha )^2}{2\,b}\,,\tilde{x}_{1,k}=\displaystyle \frac{v_0^2\sin (2\,\alpha )}{b}\,,\tilde{t}_k=\displaystyle \frac{2\,v_0\sin \alpha }{b}\) .
 
Literature
go back to reference Alder, B. J., & Wainwright, T. E. (1957). Phase transition for a hard sphere system. Journal of Chemical Physics, 27(5), 1208–1209.CrossRef Alder, B. J., & Wainwright, T. E. (1957). Phase transition for a hard sphere system. Journal of Chemical Physics, 27(5), 1208–1209.CrossRef
go back to reference Allen, M. P., & Tildesley, D. J. (1987). Computer simulation of liquids. New York: Oxford University Press.MATH Allen, M. P., & Tildesley, D. J. (1987). Computer simulation of liquids. New York: Oxford University Press.MATH
go back to reference Avci, B., & Wriggers, P. (2012). A dem-fem coupling approach for the direct numerical simulation of 3d particulate flows. Journal of Applied Mechanics, 79, 01901.CrossRef Avci, B., & Wriggers, P. (2012). A dem-fem coupling approach for the direct numerical simulation of 3d particulate flows. Journal of Applied Mechanics, 79, 01901.CrossRef
go back to reference Brilliantov N. V., Albers N., Spahn F., & Pöschel T. (2007). Collision dynamics of granular particles with adhesion. Physical Review E, 76(5, Part 1). Brilliantov N. V., Albers N., Spahn F., & Pöschel T. (2007). Collision dynamics of granular particles with adhesion. Physical Review E, 76(5, Part 1).
go back to reference Brilliantov N. V., Spahn F., Hertzsch J. M., & Pöschel T. (1996). Model for collisions in granular gases. Physical Review E, 53(5, Part B), 5382–5392. Brilliantov N. V., Spahn F., Hertzsch J. M., & Pöschel T. (1996). Model for collisions in granular gases. Physical Review E, 53(5, Part B), 5382–5392.
go back to reference Choi, J., Kudrolli, A., & Bazant, M. Z. (2005). Velocity profile of granular flows inside silos and hoppers. Journal of Physics: Condensed Matter, 17, 2533–2548. Choi, J., Kudrolli, A., & Bazant, M. Z. (2005). Velocity profile of granular flows inside silos and hoppers. Journal of Physics: Condensed Matter, 17, 2533–2548.
go back to reference Choi, J., Kudrolli, A., Rosales, R. R., & Bazant, M. Z. (2004). Diffusion and mixing in gravity-driven dense granular flows. Physical Review Letters, 92, 174301.CrossRef Choi, J., Kudrolli, A., Rosales, R. R., & Bazant, M. Z. (2004). Diffusion and mixing in gravity-driven dense granular flows. Physical Review Letters, 92, 174301.CrossRef
go back to reference Cundall, P. A., & Strack, O. D. L. (1979). Discrete numerical model for granular assemblies. Geotechnique, 29(1), 47–65.CrossRef Cundall, P. A., & Strack, O. D. L. (1979). Discrete numerical model for granular assemblies. Geotechnique, 29(1), 47–65.CrossRef
go back to reference Dhia, H. B., & Rateau, G. (2005). The arlequin method as a flexible engineering design tool. International Journal of Numerical Methods in Engineering, 62, 1442–1462.CrossRef Dhia, H. B., & Rateau, G. (2005). The arlequin method as a flexible engineering design tool. International Journal of Numerical Methods in Engineering, 62, 1442–1462.CrossRef
go back to reference Dominik, C., & Tielens, A. G. G. M. (1995). Resistance to rolling in the adhesive contact of 2 elastic spheres. Philosophical Magazine A—Physics of Condensed Matter Structure Defects and Mechanical Properties, 72(3), 783–803. Dominik, C., & Tielens, A. G. G. M. (1995). Resistance to rolling in the adhesive contact of 2 elastic spheres. Philosophical Magazine A—Physics of Condensed Matter Structure Defects and Mechanical Properties, 72(3), 783–803.
go back to reference Gingold, R. A., & Monaghan, J. J. (1977). Smoothed particle hydrodynamics: Theory and application to non-spherical stars. Monthly Notices of the Royal Astronomical Society, 181(3), 375–389.CrossRef Gingold, R. A., & Monaghan, J. J. (1977). Smoothed particle hydrodynamics: Theory and application to non-spherical stars. Monthly Notices of the Royal Astronomical Society, 181(3), 375–389.CrossRef
go back to reference Gómez-Gesteira, M., Crespo, A. J., Rogers, B. D., Dalrymple, R. A., Dominguez, J. M., & Barreiro, A. (2012a). Sphysics-development of a free-surface fluid solver-part 2: Efficiency and test cases. Computers & Geosciences, 48, 300–307. Gómez-Gesteira, M., Crespo, A. J., Rogers, B. D., Dalrymple, R. A., Dominguez, J. M., & Barreiro, A. (2012a). Sphysics-development of a free-surface fluid solver-part 2: Efficiency and test cases. Computers & Geosciences, 48, 300–307.
go back to reference Gomez-Gesteira, M., Rogers, B. D., Crespo, A. J., Dalrymple, R. A., Narayanaswamy, M., & Dominguez, J. M. (2012b). Sphysics-development of a free-surface fluid solver-part 1: Theory and formulations. Computers & Geosciences, 48, 289–299. Gomez-Gesteira, M., Rogers, B. D., Crespo, A. J., Dalrymple, R. A., Narayanaswamy, M., & Dominguez, J. M. (2012b). Sphysics-development of a free-surface fluid solver-part 1: Theory and formulations. Computers & Geosciences, 48, 289–299.
go back to reference Hertz, H. (1882). Über die Berührung fester elastischer Körper. Journal für die reine und angewandte Mathematik, 92, 156–171.MATH Hertz, H. (1882). Über die Berührung fester elastischer Körper. Journal für die reine und angewandte Mathematik, 92, 156–171.MATH
go back to reference Ishibashi, I., Perry, C., & Agarwal, T. K. (1994). Experimental determinations of contact friction for spherical glass particles. Soils and Foundations, 34, 79–84.CrossRef Ishibashi, I., Perry, C., & Agarwal, T. K. (1994). Experimental determinations of contact friction for spherical glass particles. Soils and Foundations, 34, 79–84.CrossRef
go back to reference Iwashita, K., & Oda, M. (1998). Rolling resistance at contacts in simulation of shear band development by dem. Journal of Engineering Mechanics-ASCE, 124(3), 285–292.CrossRef Iwashita, K., & Oda, M. (1998). Rolling resistance at contacts in simulation of shear band development by dem. Journal of Engineering Mechanics-ASCE, 124(3), 285–292.CrossRef
go back to reference Johnson, A. A., & Tezduyar, T. E. (1997). 3d simulation of fluid-particle interactions with the number of particles reaching 100. Computer Methods in Applied Mechanics and Engineering, 145(3–4), 301–321.CrossRef Johnson, A. A., & Tezduyar, T. E. (1997). 3d simulation of fluid-particle interactions with the number of particles reaching 100. Computer Methods in Applied Mechanics and Engineering, 145(3–4), 301–321.CrossRef
go back to reference Johnson, K. L., Kendall, K., & Roberts, A. D. (1971). Surface energy and contact of elastic solids. Proceedings of the Royal Society of London Series A-Mathematical and Physical Sciences, 324(1558), 301–313. Johnson, K. L., Kendall, K., & Roberts, A. D. (1971). Surface energy and contact of elastic solids. Proceedings of the Royal Society of London Series A-Mathematical and Physical Sciences, 324(1558), 301–313.
go back to reference Kruggel-Emden, H., Sturm, M., Wirtz, S., & Scherer, V. (2008). Selection of an appropriate time integration scheme for the discrete element method (dem). Computers & Chemical Engineering, 32(10), 2263–2279. Kruggel-Emden, H., Sturm, M., Wirtz, S., & Scherer, V. (2008). Selection of an appropriate time integration scheme for the discrete element method (dem). Computers & Chemical Engineering, 32(10), 2263–2279.
go back to reference Kuhn, M., & Bagi, K. (2004). Alternative definition of particle rolling in a granular assembly. Journal of Engineering Mechanics-ASCE, 130(7), 826–835.CrossRef Kuhn, M., & Bagi, K. (2004). Alternative definition of particle rolling in a granular assembly. Journal of Engineering Mechanics-ASCE, 130(7), 826–835.CrossRef
go back to reference Loskofsky, C., Song, F., & Newby, B. Z. (2006). Underwater adhesion measurements using the JKR technique. Journal of Adhesion, 82(7), 713–730.CrossRef Loskofsky, C., Song, F., & Newby, B. Z. (2006). Underwater adhesion measurements using the JKR technique. Journal of Adhesion, 82(7), 713–730.CrossRef
go back to reference Luding, S. (2004). Micro-macro transition for anisotropic, frictional granular packings. International Journal of Solids and Structures, 41(21), 5821–5836.CrossRef Luding, S. (2004). Micro-macro transition for anisotropic, frictional granular packings. International Journal of Solids and Structures, 41(21), 5821–5836.CrossRef
go back to reference Maruzewski, P., Le Touze, D., & Oger, G. (2009). Sph high-performance computing simulations of rigid solids impacting the free-surface of water. Journal of Hydraulic Research, 47, 126–134. Maruzewski, P., Le Touze, D., & Oger, G. (2009). Sph high-performance computing simulations of rigid solids impacting the free-surface of water. Journal of Hydraulic Research, 47, 126–134.
go back to reference Maugis, D. (1992). Adhesion of spheres—The jkr-dmt transition using a dugdale model. Journal of Colloid and Interface Science, 150(1), 243–269.CrossRef Maugis, D. (1992). Adhesion of spheres—The jkr-dmt transition using a dugdale model. Journal of Colloid and Interface Science, 150(1), 243–269.CrossRef
go back to reference Pöschel, T., & Schwager, T. (2005). Computational Granular Dynamics. Springer. Pöschel, T., & Schwager, T. (2005). Computational Granular Dynamics. Springer.
go back to reference Quentrec, B., & Brot, C. (1973). New method for searching for neighbors in molecular dynamics computations. Journal of Computational Physics, 13(3), 430–432.CrossRef Quentrec, B., & Brot, C. (1973). New method for searching for neighbors in molecular dynamics computations. Journal of Computational Physics, 13(3), 430–432.CrossRef
go back to reference Sbalzarini, I. F., Walther, J. H., Bergdorf, M., Hieber, S. E., Kotsalis, E. M., & Koumoutsakos, P. (2006). PPM—A highly efficient parallel particle-mesh library for the simulation of continuum systems. Journal of Computational Physics, 215, 566–588. Sbalzarini, I. F., Walther, J. H., Bergdorf, M., Hieber, S. E., Kotsalis, E. M., & Koumoutsakos, P. (2006). PPM—A highly efficient parallel particle-mesh library for the simulation of continuum systems. Journal of Computational Physics, 215, 566–588.
go back to reference Springel, V. (2005). The cosmological simulation code gadget-2. Monthly Notices of the Royal Astronomical Society, 364, 1105–1134.CrossRef Springel, V. (2005). The cosmological simulation code gadget-2. Monthly Notices of the Royal Astronomical Society, 364, 1105–1134.CrossRef
go back to reference Ulrich, C., & Rung, T. (2006). Validation and application of a massively-parallel hydrodynamic SPH simulation code. Proceedings of NuTTS ’09. Ulrich, C., & Rung, T. (2006). Validation and application of a massively-parallel hydrodynamic SPH simulation code. Proceedings of NuTTS ’09.
go back to reference Verlet, L. (1967). Computer experiments on classical fluids. i. Thermodynamical properties of Lennard-Jones molecules. Physical Review, 159(1), 98–103.CrossRef Verlet, L. (1967). Computer experiments on classical fluids. i. Thermodynamical properties of Lennard-Jones molecules. Physical Review, 159(1), 98–103.CrossRef
go back to reference Walther, J. H., & Sbalzarini, I. F. (2009). Large-scale parallel discrete element simulations of granular flow. Engineering Computations, 26(6, Sp. Iss. SI), 688–697; 4th International Conference on Discrete Element Methods (2007). Australia, Brisbane. Walther, J. H., & Sbalzarini, I. F. (2009). Large-scale parallel discrete element simulations of granular flow. Engineering Computations, 26(6, Sp. Iss. SI), 688–697; 4th International Conference on Discrete Element Methods (2007). Australia, Brisbane.
go back to reference Wellmann, C. (2011) A Two-Scale Model of Granular Materials Using a Coupled Discrete-Finite Element Approach. Dissertation, B11/1, Institute for Continuum Mechanics, Leibniz University Hannover. Wellmann, C. (2011) A Two-Scale Model of Granular Materials Using a Coupled Discrete-Finite Element Approach. Dissertation, B11/1, Institute for Continuum Mechanics, Leibniz University Hannover.
go back to reference Wellmann, C., Lillie, C., & Wriggers, P. (2008). A contact detection algorithm for superellipsoids based on the common-normal concept. Engineering Computations, 25(5–6), 432–442.CrossRef Wellmann, C., Lillie, C., & Wriggers, P. (2008). A contact detection algorithm for superellipsoids based on the common-normal concept. Engineering Computations, 25(5–6), 432–442.CrossRef
go back to reference Wellmann, C., & Wriggers, P. (2012). A two-scale model of granular materials. Computer Methods in Applied Mechanics and Engineering, 205–208, 46–58.MathSciNetCrossRef Wellmann, C., & Wriggers, P. (2012). A two-scale model of granular materials. Computer Methods in Applied Mechanics and Engineering, 205–208, 46–58.MathSciNetCrossRef
go back to reference Wriggers, P. (1987). On consistent tangent matrices for frictional contact problems. In G. Pande & J. Middleton (Eds.), Proceedings of NUMETA ’87. M. Nijhoff Publishers, Dordrecht. Wriggers, P. (1987). On consistent tangent matrices for frictional contact problems. In G. Pande & J. Middleton (Eds.), Proceedings of NUMETA ’87. M. Nijhoff Publishers, Dordrecht.
go back to reference Wriggers, P. (2006). Computational Contact Mechanics (2nd ed.). Berlin Heidelberg: Springer.CrossRef Wriggers, P. (2006). Computational Contact Mechanics (2nd ed.). Berlin Heidelberg: Springer.CrossRef
go back to reference Wriggers, P., Van, T. V., & Stein, E. (1990). Finite-element-formulation of large deformation impact- contact-problems with friction. Computers and Structures, 37, 319–333.CrossRef Wriggers, P., Van, T. V., & Stein, E. (1990). Finite-element-formulation of large deformation impact- contact-problems with friction. Computers and Structures, 37, 319–333.CrossRef
go back to reference Zhu, H. P., Zhou, Z. Y., Yang, R. Y., & Yu, A. B. (2007). Discrete particle simulation of particulate systems: Theoretical developments. Chemical Engineering Science, 62(13), 3378–3396.CrossRef Zhu, H. P., Zhou, Z. Y., Yang, R. Y., & Yu, A. B. (2007). Discrete particle simulation of particulate systems: Theoretical developments. Chemical Engineering Science, 62(13), 3378–3396.CrossRef
go back to reference Zohdi, T. I. (2007). Introduction to the modeling and simulation of particulate flows. SIAM. Zohdi, T. I. (2007). Introduction to the modeling and simulation of particulate flows. SIAM.
Metadata
Title
Discrete Element Methods: Basics and Applications in Engineering
Authors
Peter Wriggers
B. Avci
Copyright Year
2020
DOI
https://doi.org/10.1007/978-3-030-37518-8_1

Premium Partners