Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

13-03-2020 | Original Article | Issue 10/2020

International Journal of Machine Learning and Cybernetics 10/2020

Discriminative low-rank projection for robust subspace learning

Journal:
International Journal of Machine Learning and Cybernetics > Issue 10/2020
Authors:
Zhihui Lai, Jiaqi Bao, Heng Kong, Minghua Wan, Guowei Yang
Important notes

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

The robustness to outliers, noises, and corruptions has been paid more attention recently to increase the performance in linear feature extraction and image classification. As one of the most effective subspace learning methods, low-rank representation (LRR) can improve the robustness of an algorithm by exploring the global representative structure information among the samples. However, the traditional LRR cannot project the training samples into low-dimensional subspace with supervised information. Thus, in this paper, we integrate the properties of LRR with supervised dimensionality reduction techniques to obtain optimal low-rank subspace and discriminative projection at the same time. To achieve this goal, we proposed a novel model named Discriminative Low-Rank Projection (DLRP). Furthermore, DLRP can break the limitation of the small class problem which means the number of projections is bound by the number of classes. Our model can be solved by alternatively linearized alternating direction method with adaptive penalty and the singular value decomposition. Besides, the analyses of differences between DLRP and previous related models are shown. Extensive experiments conducted on various contaminated databases have confirmed the superiority of the proposed method.

Please log in to get access to this content

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Literature
About this article

Other articles of this Issue 10/2020

International Journal of Machine Learning and Cybernetics 10/2020 Go to the issue