Introduction
-
We propose a method for aggregating information in recommendation systems using a knowledge-based graph neural network. This method leverages knowledge graphs and user-item interaction data to integrate user intents across different item categories into the information interaction pathway.
-
We develop a causal graph model that utilizes user-item interaction data to mitigate popularity bias in recommender systems. This model allows us to systematically analyze the impact of popularity bias on recommendations by tracing the causal relationships within the graph.
-
We conducted extensive experiments on three real-world industrial datasets to demonstrate the effectiveness of our model, KeCAIN.
Related Work
Cognitive Recommendation System
Knowledge-Aware Recommendation Systems
Causal Reasoning in Recommendation
Problem Statement and Background
Problem Definition
Causal Graph and Causal Effect
Methodology
Knowledge-Aware Graph User Intent Network
User Cognitive Intent Module
Score Prediction Module
Learning
Cognitive Recommendations Based on Causal Reasoning
Experimental Analysis
Dataset
Amazon-Book | Last-FM | Alibaba-iFashion | ||
---|---|---|---|---|
User-item interaction | Number of users | 70,679 | 23,566 | 114,737 |
Number of items | 24,915 | 48,123 | 30,040 | |
Number of interactions | 847,733 | 3,034,796 | 1,781,093 | |
Knowledge Graph | Number of Entities | 88,572 | 58,266 | 59,156 |
Number of relations | 39 | 9 | 51 | |
Number of Triples | 2,557,746 | 464,567 | 279,155 |
Evaluation Metrics
Comparison with Baselines
Overall Performance Comparison
Amazon-Book | Last-FM | Alibaba-iFashion | ||||
---|---|---|---|---|---|---|
Recall@20 | NDCG@20 | Recall@20 | NDCG@20 | Recall@20 | NDCG@20 | |
MF | 0.1300 | 0.0678 | 0.0724 | 0.0617 | 0.1095 | 0.0670 |
CKE | 0.1342 | 0.0698 | 0.0732 | 0.0630 | 0.1103 | 0.0676 |
LightGCN | 0.1306 | 0.0688 | 0.0756 | 0.0677 | 0.1028 | 0.0638 |
KGAT | 0.1487 | 0.0799 | 0.0873 | 0.0744 | 0.103 | 0.0627 |
KGNN-LS | 0.1362 | 0.0560 | 0.0880 | 0.0642 | 0.1039 | 0.0557 |
CKAN | 0.1442 | 0.0698 | 0.0812 | 0.0660 | 0.0970 | 0.0509 |
R-GCN | 0.1220 | 0.0646 | 0.0743 | 0.0631 | 0.096 | 0.0515 |
KGIN | 0.1687 | 0.0915 | 0.0968 | 0.0831 | 0.1144 | 0.0712 |
NCL | 0.1381 | 0.0815 | − | − | 0.0713 | 0.0319 |
KGCL | − | − | 0.0905 | 0.0769 | 0.1148 | 0.0743 |
MCCLK | − | − | 0.0671 | 0.0603 | 0.1089 | 0.0707 |
KGRec | − | − | 0.0943 | 0.0810 | 0.1188 | 0.0743 |
AdaMCL | 0.1620 | 0.1012 | − | − | 0.0917 | 0.0423 |
CausE | 0.1254 | 0.0683 | 0.0773 | 0.0675 | 0.1036 | 0.0647 |
IPW | 0.1617 | 0.0881 | 0.1119 | 0.0978 | 0.1279 | 0.0799 |
DICE | 0.1754 | 0.0951 | 0.1125 | 0.0983 | 0.1286 | 0.0804 |
KeCAIN | 0.1895 | 0.1093 | 0.1187 | 0.1038 | 0.1372 | 0.0866 |
%Improv | 7.44% | 7.41% | 5.22% | 5.30% | 6.27% | 7.16% |
Impact of Hyperparameters
Comparison of the Number of Graph Convolution Layer
Effect of the Hyperparameter c
Cognitive Analysis of User Intents
Effect of Different Modules
Amazon-Book | Last-FM | Alibaba-iFashion | ||||
---|---|---|---|---|---|---|
Recall@20 | NDCG@20 | Recall@20 | NDCG@20 | Recall@20 | NDCG@20 | |
w/o item module | 0.1716 | 0.0931 | 0.0986 | 0.0861 | 0.1190 | 0.0744 |
w/o user module | 0.1820 | 0.0988 | 0.1123 | 0.0981 | 0.1287 | 0.0804 |
w/o KG module | 0.1788 | 0.0970 | 0.1106 | 0.0967 | 0.1230 | 0.0769 |
KeCAIN | 0.1895 | 0.1093 | 0.1187 | 0.1038 | 0.1372 | 0.0866 |
Cognitive Analysis of Popularity Bias
Amazon-Book\(^{1}\) | Last-FM\(^{2}\) | Alibaba-iFashion\(^{1}\) | ||||
---|---|---|---|---|---|---|
Recall@20 | NDCG@20 | Recall@20 | NDCG@20 | Recall@20 | NDCG@20 | |
KeCAIN w/o cr | 0.1700 | 0.0926 | 0.0974 | 0.0974 | 0.1181 | 0.0738 |
KeCAIN w/o ic | 0.1837 | 0.1001 | 0.1133 | 0.0991 | 0.1295 | 0.0809 |
KeCAIN | 0.1895 | 0.1093 | 0.1187 | 0.1038 | 0.1372 | 0.0866 |