Skip to main content
Top

2019 | OriginalPaper | Chapter

38. Dislocation Density-Based Modeling of Crystal Plasticity Finite Element Analysis

Author : Tetsuya Ohashi

Published in: Handbook of Mechanics of Materials

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Dislocations play a major role in plastic deformation and fracture of metallic materials. A number of metallographic aspects such as grain boundaries, precipitates, and others contribute to the dislocations’ behavior, and therefore, we have to consider their effects too when we intend to understand the mechanical behavior of metals with microstructure. Finite element method is a powerful tool to express the shape and arrangement of metal microstructures and analyze the deformation under a prescribed boundary and loading conditions. We tried to develop models for the movement, interaction, and accumulation of dislocations during plastic slip deformation in metal microstructure and implemented them to the framework of finite element method. Models originate from physics of discrete dislocations and are brought to dislocation density-based numerical models. In this chapter, the physical pictures and expressions of dislocation density-based models are shown. Some examples of analyses are also shown.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Hull D, Bacon DJ. Introduction to dislocations. 4th ed. Oxford: Butterworth Heinemann; 2001. Hull D, Bacon DJ. Introduction to dislocations. 4th ed. Oxford: Butterworth Heinemann; 2001.
2.
go back to reference Ohashi T, Kawamukai M, Zbib H. A multiscale approach for modeling scale-dependent yield stress in polycrystalline metals. Int J Plast. 2007;23:897–914.CrossRef Ohashi T, Kawamukai M, Zbib H. A multiscale approach for modeling scale-dependent yield stress in polycrystalline metals. Int J Plast. 2007;23:897–914.CrossRef
3.
go back to reference Zbib HM, Diaz T, Rubia D. A multiscale model of plasticity. Int J Plast. 2002;18:1133–63.CrossRef Zbib HM, Diaz T, Rubia D. A multiscale model of plasticity. Int J Plast. 2002;18:1133–63.CrossRef
4.
go back to reference Ashby MF. The deformation of plastically non-homogeneous materials. Philos Mag. 1970;21:399–424.CrossRef Ashby MF. The deformation of plastically non-homogeneous materials. Philos Mag. 1970;21:399–424.CrossRef
5.
go back to reference Kocks UF. Laws for work-hardening and low-temperature creep. Trans ASME J Eng Mat Tech. 1976;98:76–85.CrossRef Kocks UF. Laws for work-hardening and low-temperature creep. Trans ASME J Eng Mat Tech. 1976;98:76–85.CrossRef
6.
go back to reference Mecking H, Kocks UF. Kinetics of flow and strain-hardening. Acta Metall. 1981;29:1865–75.CrossRef Mecking H, Kocks UF. Kinetics of flow and strain-hardening. Acta Metall. 1981;29:1865–75.CrossRef
7.
go back to reference Yasnikov IS, Vinogradov A, Estrin Y. Revisiting the Considere criterion from the viewpoint of dislocation theory fundamentals. Scr Mater. 2014;76:37–40.CrossRef Yasnikov IS, Vinogradov A, Estrin Y. Revisiting the Considere criterion from the viewpoint of dislocation theory fundamentals. Scr Mater. 2014;76:37–40.CrossRef
8.
go back to reference Ohashi T. Numerical modelling of plastic multislip in metal crystals of f . c . c . type. Philos Mag A. 1994;70:793–803. Ohashi T. Numerical modelling of plastic multislip in metal crystals of f . c . c . type. Philos Mag A. 1994;70:793–803.
9.
go back to reference Ohashi T. A new model of scale dependent crystal plasticity analysis. In: Kitagawa H, Shibutani Y, editors. IUTAM symposium on mesoscopic dynamics of fracture process and materials strength. Osaka: Kluwer; 2003;97–106. Ohashi T. A new model of scale dependent crystal plasticity analysis. In: Kitagawa H, Shibutani Y, editors. IUTAM symposium on mesoscopic dynamics of fracture process and materials strength. Osaka: Kluwer; 2003;97–106.
10.
go back to reference Ohashi T. Crystal plasticity analysis of dislocation emission from micro voids. Int J Plast. 2005;21:2071–88.CrossRef Ohashi T. Crystal plasticity analysis of dislocation emission from micro voids. Int J Plast. 2005;21:2071–88.CrossRef
11.
go back to reference Kuhlmann-Wilsdorf D. Theory of plastic deformation: - properties of low energy dislocation structures. Mater Sci Eng A. 1989;113:1–41.CrossRef Kuhlmann-Wilsdorf D. Theory of plastic deformation: - properties of low energy dislocation structures. Mater Sci Eng A. 1989;113:1–41.CrossRef
12.
go back to reference Taylor GI. The mechanism of plastic deformation of crystals. part I. theoretical. Proc R Soc A Math Phys Eng Sci. 1934;145:362–87.CrossRef Taylor GI. The mechanism of plastic deformation of crystals. part I. theoretical. Proc R Soc A Math Phys Eng Sci. 1934;145:362–87.CrossRef
13.
go back to reference Mott NF. A theory of work-hardening of metal crystals. Phil Mag Ser. 7. 1952;43:1151–78.CrossRef Mott NF. A theory of work-hardening of metal crystals. Phil Mag Ser. 7. 1952;43:1151–78.CrossRef
14.
go back to reference Okuyama Y, Ohashi T. Numerical modeling for strain hardening of two-phase alloys with dispersion of hard fine spherical particles. Tetsu-to-Hagane. 2016;102:396–404CrossRef Okuyama Y, Ohashi T. Numerical modeling for strain hardening of two-phase alloys with dispersion of hard fine spherical particles. Tetsu-to-Hagane. 2016;102:396–404CrossRef
15.
go back to reference Yasuda Y, Ohashi T. Crystal plasticity analysis considering dislocations’ behavior in ferrite/cementite lamellar structure. ISIJ Int. 2017;57:573–580.CrossRef Yasuda Y, Ohashi T. Crystal plasticity analysis considering dislocations’ behavior in ferrite/cementite lamellar structure. ISIJ Int. 2017;57:573–580.CrossRef
16.
go back to reference Fleck N, Muller G, Ashby M, Hutchinson J. Strain gradient plasticity: Theory and experiment. Acta Metall Mater. 1994;42:475–87.CrossRef Fleck N, Muller G, Ashby M, Hutchinson J. Strain gradient plasticity: Theory and experiment. Acta Metall Mater. 1994;42:475–87.CrossRef
17.
go back to reference Gurtin ME, Ohno N. A gradient theory of small-deformation, single-crystal plasticity that accounts for GNDinduced interactions between slip systems. J Mech Phys Solids. 2011;59:320–43.MathSciNetCrossRef Gurtin ME, Ohno N. A gradient theory of small-deformation, single-crystal plasticity that accounts for GNDinduced interactions between slip systems. J Mech Phys Solids. 2011;59:320–43.MathSciNetCrossRef
18.
go back to reference Ohashi T. Computer simulation of non-uniform multiple slip in face centered cubic bicrystals. Trans JIM. 1987;28:906–15.CrossRef Ohashi T. Computer simulation of non-uniform multiple slip in face centered cubic bicrystals. Trans JIM. 1987;28:906–15.CrossRef
19.
go back to reference Jackson PJ, Basinski ZS. Latent hardening and the flow stress in copper single crystals. Can J Phys. 1967;45:707–35.CrossRef Jackson PJ, Basinski ZS. Latent hardening and the flow stress in copper single crystals. Can J Phys. 1967;45:707–35.CrossRef
20.
go back to reference Hiura F, Niewczas M. Latent hardening effect under self- and coplanar dislocation interactions in Mg single crystals. Scr Mater. 2015;106:8–11.CrossRef Hiura F, Niewczas M. Latent hardening effect under self- and coplanar dislocation interactions in Mg single crystals. Scr Mater. 2015;106:8–11.CrossRef
21.
go back to reference Hansen N. Hall–Petch relation and boundary strengthening. Scr Mater. 2004;51:801–6.CrossRef Hansen N. Hall–Petch relation and boundary strengthening. Scr Mater. 2004;51:801–6.CrossRef
22.
go back to reference Yasuda Y, Ohashi T. Crystal plasticity analyses of scale dependent mechanical properties of ferrite/cementite lamellar structure model in pearlite steel wire with bagaryatsky or pitsch-petch orientation relationship. ISIJ Int. 2016;56:2320–6.CrossRef Yasuda Y, Ohashi T. Crystal plasticity analyses of scale dependent mechanical properties of ferrite/cementite lamellar structure model in pearlite steel wire with bagaryatsky or pitsch-petch orientation relationship. ISIJ Int. 2016;56:2320–6.CrossRef
23.
go back to reference Hill R. J Mech Phys Solids. Generalized constitutive relations for incremental deformation of metal crystals by multislip. J Mech Phys Solids. 1966;14:95–102.MathSciNetCrossRef Hill R. J Mech Phys Solids. Generalized constitutive relations for incremental deformation of metal crystals by multislip. J Mech Phys Solids. 1966;14:95–102.MathSciNetCrossRef
24.
go back to reference Ohashi T, Amagai R, Okuyama Y, Kawano Y, Mayama T. Crystal plasticity finite element analysis of slip deformation in the polycrystal models of textured Ti alloys. In: JSME M&M 2016 conference. Kobe, Japan: Japan Society of Mechanical Engineers; 2016:8–10. Ohashi T, Amagai R, Okuyama Y, Kawano Y, Mayama T. Crystal plasticity finite element analysis of slip deformation in the polycrystal models of textured Ti alloys. In: JSME M&M 2016 conference. Kobe, Japan: Japan Society of Mechanical Engineers; 2016:8–10.
25.
go back to reference Inoue H. Texture of Ti and Ti alloys. Mater Sci Technol “Kinzoku” (in Japanese). 1999;69:30–38. Inoue H. Texture of Ti and Ti alloys. Mater Sci Technol “Kinzoku” (in Japanese). 1999;69:30–38.
26.
go back to reference Bridier F, McDowell DL, Villechaise P, Mendez J. Crystal plasticity modeling of slip activity in Ti-6Al-4V under high cycle fatigue loading. Int J Plast. 2009;25:1066–82.CrossRef Bridier F, McDowell DL, Villechaise P, Mendez J. Crystal plasticity modeling of slip activity in Ti-6Al-4V under high cycle fatigue loading. Int J Plast. 2009;25:1066–82.CrossRef
Metadata
Title
Dislocation Density-Based Modeling of Crystal Plasticity Finite Element Analysis
Author
Tetsuya Ohashi
Copyright Year
2019
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-10-6884-3_74

Premium Partners