Skip to main content
Top

2019 | OriginalPaper | Chapter

15. Dispersion Engineering of Nonreciprocal Metamaterials

Authors : Tetsuya Ueda, Tatsuo Itoh

Published in: Electromagnetic Metamaterials

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Nonreciprocal metamaterials using normally magnetized ferrite microstrip lines are reviewed, showing derivation of formula for the phase-shifting nonreciprocity based on the eigenmode solution in terms of the effective magnetization in ferrite and asymmetric boundary condition for the wave-guiding structures. Dispersion engineering of the nonreciprocity is also discussed for potential applications to leaky wave antennas with wide steering angles and reduced beam squint.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference C. Caloz, T. Itoh, Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications (Wiley, New Jersey, 2006) C. Caloz, T. Itoh, Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications (Wiley, New Jersey, 2006)
2.
go back to reference G.V. Eleftheriades, K.G. Balmain, Negative Refraction Metamaterials: Fundamental Principles and Applications (IEEE Press, Wiley, New Jersey, 2005)CrossRef G.V. Eleftheriades, K.G. Balmain, Negative Refraction Metamaterials: Fundamental Principles and Applications (IEEE Press, Wiley, New Jersey, 2005)CrossRef
3.
go back to reference N. Engheta, R.W. Ziolkowski, Metamaterials: Physics and Engineering Explorations (IEEE Press, Wiley, New Jersey, 2006)CrossRef N. Engheta, R.W. Ziolkowski, Metamaterials: Physics and Engineering Explorations (IEEE Press, Wiley, New Jersey, 2006)CrossRef
4.
go back to reference B. Lax, K. Button, Microwave Ferrites and Ferrimagnetics (McGraw-Hill, New York, 1962) B. Lax, K. Button, Microwave Ferrites and Ferrimagnetics (McGraw-Hill, New York, 1962)
5.
go back to reference A.G. Gurevich, G.A. Melkov, Magnetization Oscillations and Waves (CRC Press, Boca Raton, 1996) A.G. Gurevich, G.A. Melkov, Magnetization Oscillations and Waves (CRC Press, Boca Raton, 1996)
6.
go back to reference L.D. Landau, E.M. Lifshitz, L.P. Pitaevski, Electrodynamics of Continuous Media, 2nd edn. (Butterworth Heinemann Ltd., 1995) L.D. Landau, E.M. Lifshitz, L.P. Pitaevski, Electrodynamics of Continuous Media, 2nd edn. (Butterworth Heinemann Ltd., 1995)
7.
go back to reference D.D. Stancil, Theory of Magnetostatic Waves (Springer, 1993) D.D. Stancil, Theory of Magnetostatic Waves (Springer, 1993)
8.
go back to reference T. Kodera, D.L. Sounas, C. Caloz, Artificial Faraday rotation using a ring metamaterial structure without static magnetic field. Appl. Phys. Lett. 99(3), 031114 (2011)CrossRef T. Kodera, D.L. Sounas, C. Caloz, Artificial Faraday rotation using a ring metamaterial structure without static magnetic field. Appl. Phys. Lett. 99(3), 031114 (2011)CrossRef
9.
go back to reference B.-I. Popa, S.A. Cummer, Nonreciprocal active metamaterials. Phys. Rev. B 85(205101), 2 (2012) B.-I. Popa, S.A. Cummer, Nonreciprocal active metamaterials. Phys. Rev. B 85(205101), 2 (2012)
10.
go back to reference A. Figotin, I. Vitebskiy, Electromagnetic unidirectionality in magnetic photonic crystals. Phys. Rev. B 67(165210), 1–20 (2003) A. Figotin, I. Vitebskiy, Electromagnetic unidirectionality in magnetic photonic crystals. Phys. Rev. B 67(165210), 1–20 (2003)
11.
go back to reference M.B. Stephanson, K. Sertel, J.L. Volakis, Frozen modes in coupled microstrip lines printed on ferromagnetic substrates. IEEE Microw. Wirel. Compon. Lett. 18(5), 305–307 (2008)CrossRef M.B. Stephanson, K. Sertel, J.L. Volakis, Frozen modes in coupled microstrip lines printed on ferromagnetic substrates. IEEE Microw. Wirel. Compon. Lett. 18(5), 305–307 (2008)CrossRef
12.
go back to reference M. Tsutsumi, T. Ueda, Nonreciprocal left-handed microstrip lines using ferrite substrate, in IEEE MTT-S International Microwave Symposium Digest, pp. 249–252, June 2004 M. Tsutsumi, T. Ueda, Nonreciprocal left-handed microstrip lines using ferrite substrate, in IEEE MTT-S International Microwave Symposium Digest, pp. 249–252, June 2004
13.
go back to reference T. Ueda, M. Tsutsumi, Left-handed transmission characteristics of ferrite microstrip lines without series capacitive load. IEICE Trans. Electron E89-C, 1318–1323 (2006)CrossRef T. Ueda, M. Tsutsumi, Left-handed transmission characteristics of ferrite microstrip lines without series capacitive load. IEICE Trans. Electron E89-C, 1318–1323 (2006)CrossRef
14.
go back to reference T. Ueda, M. Tsutsumi, Nonreciprocal left-handed transmission characteristics of microstrip lines on the ferrite substrate. IET Proc. Microw. Antennas Propag. 1(2), 349–354 (2007) T. Ueda, M. Tsutsumi, Nonreciprocal left-handed transmission characteristics of microstrip lines on the ferrite substrate. IET Proc. Microw. Antennas Propag. 1(2), 349–354 (2007)
15.
go back to reference T. Kodera, C. Caloz, Uniform ferrite-loaded open waveguide structure with CRLH response and its application to a novel backfire-to-endfire leaky-wave antenna. IEEE Trans. Microw. Theory Tech. 57(4), 784–795 (2009)CrossRef T. Kodera, C. Caloz, Uniform ferrite-loaded open waveguide structure with CRLH response and its application to a novel backfire-to-endfire leaky-wave antenna. IEEE Trans. Microw. Theory Tech. 57(4), 784–795 (2009)CrossRef
16.
go back to reference N. Apaydin, K. Sertel, J.L. Volakis, Nonreciprocal and magnetically scanned leaky-wave antenna using coupled CRLH lines. IEEE Trans. Antennas Propag. 62(6), 2954–2961 (2014)CrossRef N. Apaydin, K. Sertel, J.L. Volakis, Nonreciprocal and magnetically scanned leaky-wave antenna using coupled CRLH lines. IEEE Trans. Antennas Propag. 62(6), 2954–2961 (2014)CrossRef
17.
go back to reference T. Ueda, K. Horikawa, M. Akiyama, M. Tsutsumi, Nonreciprocal phase-shift composite right/left handed transmission lines and their application to leaky wave antennas. IEEE Trans. Antennas Propag. 57(7), 1995–2005 (2009)CrossRef T. Ueda, K. Horikawa, M. Akiyama, M. Tsutsumi, Nonreciprocal phase-shift composite right/left handed transmission lines and their application to leaky wave antennas. IEEE Trans. Antennas Propag. 57(7), 1995–2005 (2009)CrossRef
18.
go back to reference T. Ueda, M. Akiyama, Nonreciprocal phase-shift composite right/left handed transmission lines using ferrite-rod-embedded substrate. IEEE Trans. Magn. 45(10), 4203–4206 (2009)CrossRef T. Ueda, M. Akiyama, Nonreciprocal phase-shift composite right/left handed transmission lines using ferrite-rod-embedded substrate. IEEE Trans. Magn. 45(10), 4203–4206 (2009)CrossRef
19.
go back to reference H. Kishimoto, T. Ueda, Y. Kado, Experimental demonstration of nonreciprocal phase-shift composite right/left handed transmission lines with ferrite-rod-embedded substrate. IEEE Trans. Magn. 47(10), 3724–3727 (2011)CrossRef H. Kishimoto, T. Ueda, Y. Kado, Experimental demonstration of nonreciprocal phase-shift composite right/left handed transmission lines with ferrite-rod-embedded substrate. IEEE Trans. Magn. 47(10), 3724–3727 (2011)CrossRef
20.
go back to reference K. Horikawa, T. Ueda, M. Akiyama, Beam steering of leaky wave radiation from nonreciprocal phase-shift composite right/left handed transmission lines. IEICE Trans. Electron. E93-C(7), 1089–1097 (2010)CrossRef K. Horikawa, T. Ueda, M. Akiyama, Beam steering of leaky wave radiation from nonreciprocal phase-shift composite right/left handed transmission lines. IEICE Trans. Electron. E93-C(7), 1089–1097 (2010)CrossRef
21.
go back to reference K. Horikawa, T. Ueda, M. Akiyama, Influence of reflected waves at a terminal of nonreciprocal phase-shift CRLH transmission lines on the leaky wave radiation, in Proceedings of Asia-Pacific Microwave Conference, pp. 151–154, Dec 2009 K. Horikawa, T. Ueda, M. Akiyama, Influence of reflected waves at a terminal of nonreciprocal phase-shift CRLH transmission lines on the leaky wave radiation, in Proceedings of Asia-Pacific Microwave Conference, pp. 151–154, Dec 2009
22.
go back to reference T. Ueda, H. Kishimoto, Pseudo-traveling wave resonator based on nonreciprocal phase-shift composite right/left handed transmission lines, in IEEE MTT-S International Microwave Symposium Digest, pp. 41–44, May 2010 T. Ueda, H. Kishimoto, Pseudo-traveling wave resonator based on nonreciprocal phase-shift composite right/left handed transmission lines, in IEEE MTT-S International Microwave Symposium Digest, pp. 41–44, May 2010
23.
go back to reference T. Ueda, S. Yamamoto, Y. Kado, T. Itoh, Pseudo-traveling wave resonator with magnetically tunable phase gradient of fields and its applications to beam steering antennas. IEEE Trans. Microw. Theory Tech. 60(10), 3043–3054 (2012)CrossRef T. Ueda, S. Yamamoto, Y. Kado, T. Itoh, Pseudo-traveling wave resonator with magnetically tunable phase gradient of fields and its applications to beam steering antennas. IEEE Trans. Microw. Theory Tech. 60(10), 3043–3054 (2012)CrossRef
24.
go back to reference T. Ueda, J. Fukuda, Y. Kado, T. Itoh, Nonreciprocal phase-shift CRLH transmission lines using geometrical asymmetry with periodically inserted double shunt stubs, in Proceedings of 42nd European Microwave Conference, pp. 570–573, Oct 2012 T. Ueda, J. Fukuda, Y. Kado, T. Itoh, Nonreciprocal phase-shift CRLH transmission lines using geometrical asymmetry with periodically inserted double shunt stubs, in Proceedings of 42nd European Microwave Conference, pp. 570–573, Oct 2012
25.
go back to reference A. Porokhnyuk, T. Ueda, Y. Kado, T. Itoh, Beam antenna with circular polarization rotation switching based on passive components, in Proceedings of 44th European Microwave Conference, pp. 327–330, Oct 2014 A. Porokhnyuk, T. Ueda, Y. Kado, T. Itoh, Beam antenna with circular polarization rotation switching based on passive components, in Proceedings of 44th European Microwave Conference, pp. 327–330, Oct 2014
26.
go back to reference K. Ninomiya, T. Ueda, A. Porokhnyuk, T. Itoh, Demonstration of circularly-polarized leaky-wave antenna based on pseudo-traveling wave resonance, in Proceedings of 45th European Microwave Conference, pp. 450–453, Sept 2015 K. Ninomiya, T. Ueda, A. Porokhnyuk, T. Itoh, Demonstration of circularly-polarized leaky-wave antenna based on pseudo-traveling wave resonance, in Proceedings of 45th European Microwave Conference, pp. 450–453, Sept 2015
27.
go back to reference A. Porokhnyuk, T. Ueda, Y. Kado, T. Itoh, Design of nonreciprocal CRLH metamaterial for non-squinting leaky-wave antenna, in IEEE MTT-S International Microwave Symposium Digest, vol. TH1H-1, pp. 1–3, June 2013 A. Porokhnyuk, T. Ueda, Y. Kado, T. Itoh, Design of nonreciprocal CRLH metamaterial for non-squinting leaky-wave antenna, in IEEE MTT-S International Microwave Symposium Digest, vol. TH1H-1, pp. 1–3, June 2013
28.
go back to reference A. Porokhnyku, T. Ueda, Y. Kado, T. Itoh, Mode analysis of phase-constant nonreciprocity in ferrite-embedded CRLH metamaterials. IEICE Trans. Electron. E96-C(10), 1263–1272, Oct 2013CrossRef A. Porokhnyku, T. Ueda, Y. Kado, T. Itoh, Mode analysis of phase-constant nonreciprocity in ferrite-embedded CRLH metamaterials. IEICE Trans. Electron. E96-C(10), 1263–1272, Oct 2013CrossRef
29.
go back to reference T. Ueda, K. Ninomiya, K. Yoshida, T. Itoh, Design of dispersion-free phase-shifting nonreciprocity in composite right/left handed metamaterials, in IEEE MTT-S International Microwave Symposium Digest, vol. TH2G-1, pp. 1–4, May 2016 T. Ueda, K. Ninomiya, K. Yoshida, T. Itoh, Design of dispersion-free phase-shifting nonreciprocity in composite right/left handed metamaterials, in IEEE MTT-S International Microwave Symposium Digest, vol. TH2G-1, pp. 1–4, May 2016
30.
go back to reference R.E. Collin, Foundations for Microwave Engineering, 2nd edn. (IEEE Press) R.E. Collin, Foundations for Microwave Engineering, 2nd edn. (IEEE Press)
31.
go back to reference D.M. Pozar, Microwave Engineering, 4th edn. (Wiley, 2012) D.M. Pozar, Microwave Engineering, 4th edn. (Wiley, 2012)
32.
go back to reference M.E. Hines, Reciprocal and nonreciprocal modes of propagation in ferrite strip line and microstrip devices. IEEE Trans. Microw. Theory Tech. 19(5), 442–451 (1971)CrossRef M.E. Hines, Reciprocal and nonreciprocal modes of propagation in ferrite strip line and microstrip devices. IEEE Trans. Microw. Theory Tech. 19(5), 442–451 (1971)CrossRef
Metadata
Title
Dispersion Engineering of Nonreciprocal Metamaterials
Authors
Tetsuya Ueda
Tatsuo Itoh
Copyright Year
2019
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-13-8649-7_15