Skip to main content
Top

2019 | OriginalPaper | Chapter

45. Display Glass

Authors : Matt Dejneka, T. J. Kiczenski

Published in: Springer Handbook of Glass

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Active matrix displays are rapidly making all other display technologies on the market obsolete. They are all around us, from the smart watches on our wrist, to the phones in our pocket, to the TVs in our homes and they provide us with information, entertainment, biometrics, and a connection to the world, all on a thin bright device. The array of thin film transistors in the backplane of all active matrix devices eliminates cross-talk between pixels, provides a larger dynamic range in brightness, and accelerates the response time of the display. Whether it be a liquid crystal display () or an organic light emitting diode ()-based display, an efficient and responsive active matrix of thin film transistors requires high mobility silicon, which requires high processing temperatures and precise patterning. This puts great demands on the glass substrate that the transistors and the entire display are built upon. The glass must be incredibly flat, smooth, and dimensionally stable at temperatures that would sag common window glass in a heap. This chapter will explore the amazing melting and forming technologies that have been developed to produce precision display glass sheets as well as the glass compositions that are the foundation for glass forming and device fabrication.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
go back to reference M. Graham, A. Shuldiner: Corning and the military: Innovation in an era of permanent mobilization. In: Corning and the Craft of Innovation (Oxford University Press, Oxford 2001) pp. 173–278 M. Graham, A. Shuldiner: Corning and the military: Innovation in an era of permanent mobilization. In: Corning and the Craft of Innovation (Oxford University Press, Oxford 2001) pp. 173–278
go back to reference J. Chen, W. Cranton, M. Fihn: Handbook of Visual Display Technology (Springer, Berlin 2012)CrossRef J. Chen, W. Cranton, M. Fihn: Handbook of Visual Display Technology (Springer, Berlin 2012)CrossRef
go back to reference L.K. Baxter: Capacitive Sensors: Design and Applications (Wiley-IEEE, Piscataway 1997) L.K. Baxter: Capacitive Sensors: Design and Applications (Wiley-IEEE, Piscataway 1997)
go back to reference R.J. Araujo, N.J. Binkowski: Alkali metal ion migration control, US Patent (Application) 5578103 (1996) R.J. Araujo, N.J. Binkowski: Alkali metal ion migration control, US Patent (Application) 5578103 (1996)
go back to reference P. Bocko: Glass substrates for AMLCD, OLED and emerging display platforms. In: Handbook of Visual Display Technology, ed. by J. Chen, W. Cranton, M. Fihn (Springer, Berlin 2012) pp. 599–623CrossRef P. Bocko: Glass substrates for AMLCD, OLED and emerging display platforms. In: Handbook of Visual Display Technology, ed. by J. Chen, W. Cranton, M. Fihn (Springer, Berlin 2012) pp. 599–623CrossRef
go back to reference G.C.A.M. Janssen, M.M. Abdalla, F. van Keulen, B.R. Pujada, B. van Venrooy: Celebrating the 100th anniversary of the Stoney equation for film stress: Developments from polycrystalline steel strips to single crystal silicon wafers, Thin Solid Films 517, 1858–1867 (2009)CrossRef G.C.A.M. Janssen, M.M. Abdalla, F. van Keulen, B.R. Pujada, B. van Venrooy: Celebrating the 100th anniversary of the Stoney equation for film stress: Developments from polycrystalline steel strips to single crystal silicon wafers, Thin Solid Films 517, 1858–1867 (2009)CrossRef
go back to reference S.M. Rekhson, O.V. Mazurin: Stress and structural relaxation in Na2O-CaO-SiO2 glass, J. Am. Ceram. Soc. 57, 327–328 (1974)CrossRef S.M. Rekhson, O.V. Mazurin: Stress and structural relaxation in Na2O-CaO-SiO2 glass, J. Am. Ceram. Soc. 57, 327–328 (1974)CrossRef
go back to reference S.-R. Ryu, M. Tomozawa: Structural relaxation time of bulk and fiber silica glass as a function of fictive temperature and holding temperature, J. Am. Ceram. Soc. 89, 81–88 (2006)CrossRef S.-R. Ryu, M. Tomozawa: Structural relaxation time of bulk and fiber silica glass as a function of fictive temperature and holding temperature, J. Am. Ceram. Soc. 89, 81–88 (2006)CrossRef
go back to reference A. Einstein: Investigation on the Theory of the Brownian Movement (Dover, New York 1926) A. Einstein: Investigation on the Theory of the Brownian Movement (Dover, New York 1926)
go back to reference J. Brillo, A. Pommrich, A. Meyer: Relation between self-diffusion and viscosity in dense liquidus: New experimental results from electrostatic levitation, Phys. Rev. Lett. 107, 1–4 (2011)CrossRef J. Brillo, A. Pommrich, A. Meyer: Relation between self-diffusion and viscosity in dense liquidus: New experimental results from electrostatic levitation, Phys. Rev. Lett. 107, 1–4 (2011)CrossRef
go back to reference F.E. Wooley: Melting/fining. In: Engineered Materials Handbook Ceramics and Glasses, Vol. 4, ed. by S. Schneider (ASM International, Materials Park 1991) pp. 386–393 F.E. Wooley: Melting/fining. In: Engineered Materials Handbook Ceramics and Glasses, Vol. 4, ed. by S. Schneider (ASM International, Materials Park 1991) pp. 386–393
go back to reference D.C. Boyd, D.A. Thompson: Glass. In: Encyclopedia of Chemical Technology, 3rd edn., Vol. 11, ed. by J.I. Kroschwitz, A. Seidel (Wiley, Chicester 1980) p. 807 D.C. Boyd, D.A. Thompson: Glass. In: Encyclopedia of Chemical Technology, 3rd edn., Vol. 11, ed. by J.I. Kroschwitz, A. Seidel (Wiley, Chicester 1980) p. 807
go back to reference M.S. Pambianchi, M. Dejneka, T. Gross, A. Ellison, S. Gomez, J. Price, Y. Fang, P. Tandon, D. Bookbinder, M.J. Li: Corning incorporated: Designing a new future with glass and optics. In: Materials Research for Manufacturing, ed. by L. Madsen, E. Svedberg (Springer, Cham 2016) M.S. Pambianchi, M. Dejneka, T. Gross, A. Ellison, S. Gomez, J. Price, Y. Fang, P. Tandon, D. Bookbinder, M.J. Li: Corning incorporated: Designing a new future with glass and optics. In: Materials Research for Manufacturing, ed. by L. Madsen, E. Svedberg (Springer, Cham 2016)
go back to reference R. Doremus: Glass Science (Wiley, New York 1973) R. Doremus: Glass Science (Wiley, New York 1973)
go back to reference A. Ellison, C. Cornejo: Glass substrates for liquid crystal displays, Int. J. Appl. Glass Sci. 1(1), 87–103 (2010)CrossRef A. Ellison, C. Cornejo: Glass substrates for liquid crystal displays, Int. J. Appl. Glass Sci. 1(1), 87–103 (2010)CrossRef
go back to reference K. Kim: Redox reaction of multivalent ions in glass melts, J. Korean Ceram. Soc. 52, 83–91 (2015)CrossRef K. Kim: Redox reaction of multivalent ions in glass melts, J. Korean Ceram. Soc. 52, 83–91 (2015)CrossRef
go back to reference E. Fourcault: Aparatus for the manufacture of plate glass by stretching, Patent US717378 (1902) E. Fourcault: Aparatus for the manufacture of plate glass by stretching, Patent US717378 (1902)
go back to reference M. Cable: Mechanization of glass manufacture, J. Am. Ceram. Soc. 82, 1093–1112 (1999)CrossRef M. Cable: Mechanization of glass manufacture, J. Am. Ceram. Soc. 82, 1093–1112 (1999)CrossRef
go back to reference I. Colburn: Method and apparatus for drawing sheet glass, Patent US860528 (1903) I. Colburn: Method and apparatus for drawing sheet glass, Patent US860528 (1903)
go back to reference H. Stevens: Forming. In: Engineered Materials Handbook: Ceramics and Glasses, Vol. 4, ed. by S. Schneider (ASM International, Materials Park 1991) pp. 394–401 H. Stevens: Forming. In: Engineered Materials Handbook: Ceramics and Glasses, Vol. 4, ed. by S. Schneider (ASM International, Materials Park 1991) pp. 394–401
go back to reference D.N. Brown: Sheet glass forming apparatus, Patent US2422466A (1947) D.N. Brown: Sheet glass forming apparatus, Patent US2422466A (1947)
go back to reference R. Mauch, H. Wegener, A. Kruse, N. Hildebrand: Thin glass substrates for mobile applications, Proc. SPIE 4102, 162–168 (2000)CrossRef R. Mauch, H. Wegener, A. Kruse, N. Hildebrand: Thin glass substrates for mobile applications, Proc. SPIE 4102, 162–168 (2000)CrossRef
go back to reference H. Bessemer: Certain improvements in the manufacture of glass, Patent Br. 12101 (1848) H. Bessemer: Certain improvements in the manufacture of glass, Patent Br. 12101 (1848)
go back to reference L.A.B. Pilkington, K. Bickerstaff: Manufacture of flat glass, Patent US2911759A (1959) L.A.B. Pilkington, K. Bickerstaff: Manufacture of flat glass, Patent US2911759A (1959)
go back to reference L.A.B. Pilkington: Review lecture: The float glass process, Proc. R. Soc. A 314, 1 (1969)CrossRef L.A.B. Pilkington: Review lecture: The float glass process, Proc. R. Soc. A 314, 1 (1969)CrossRef
go back to reference T. Kloss, G. Lautenschlager, K. Schneider: Advances in the process of floating borosilicate glasses and some recent applications for specialty borosilicate float glasses, Glass Technol. 41, 177–181 (2000) T. Kloss, G. Lautenschlager, K. Schneider: Advances in the process of floating borosilicate glasses and some recent applications for specialty borosilicate float glasses, Glass Technol. 41, 177–181 (2000)
go back to reference Y.S. Choi, J.U. Yun, S.E. Park: Flat panel display glass: Current status and future, J. Non-Cryst. Solids 431, 2–7 (2016)CrossRef Y.S. Choi, J.U. Yun, S.E. Park: Flat panel display glass: Current status and future, J. Non-Cryst. Solids 431, 2–7 (2016)CrossRef
go back to reference S.M. Dockerty, G.C. Shay: Downflow sheet drawing method and apparatus, Patent US3149949A (1964) S.M. Dockerty, G.C. Shay: Downflow sheet drawing method and apparatus, Patent US3149949A (1964)
go back to reference P. Bocko: The challenges of higher-generation glass, Inf. Disp. 19, 12–15 (2003) P. Bocko: The challenges of higher-generation glass, Inf. Disp. 19, 12–15 (2003)
go back to reference M. Graham, A. Shuldiner: Reinstitutionalizing R&D: TV, Corning ware, and the search for breakthroughs. In: Corning and the Craft of Innovation (Oxford University Press, Oxford 2001) pp. 260–267 M. Graham, A. Shuldiner: Reinstitutionalizing R&D: TV, Corning ware, and the search for breakthroughs. In: Corning and the Craft of Innovation (Oxford University Press, Oxford 2001) pp. 260–267
go back to reference J.W. Alpha, W.H. Dumbaugh: Thin silicon film electronic device, Patent US4180618 (1975) J.W. Alpha, W.H. Dumbaugh: Thin silicon film electronic device, Patent US4180618 (1975)
go back to reference ASTM C829–81(2015): Standard Practices for Measurement of Liquidus Temperature of Glass by the Gradient Furnace Method (ASTM International, West Conshohocken 2015) ASTM C829–81(2015): Standard Practices for Measurement of Liquidus Temperature of Glass by the Gradient Furnace Method (ASTM International, West Conshohocken 2015)
go back to reference W.D. Kingery, H.K. Bowen, D.R. Uhlmann: Introduction to Ceramics (Wiley, New York 1976) pp. 91–100 W.D. Kingery, H.K. Bowen, D.R. Uhlmann: Introduction to Ceramics (Wiley, New York 1976) pp. 91–100
go back to reference R. Roberts: Thermal expansion reference data: Silicon 300–850 K, J. Phys. D 14, L163–L166 (1981)CrossRef R. Roberts: Thermal expansion reference data: Silicon 300–850 K, J. Phys. D 14, L163–L166 (1981)CrossRef
go back to reference C. Swenson: Recommended values for the thermal expansivity of silicon from 0 to 1000 K, J. Phys. Chem. Ref. Data 12, 179–182 (1983)CrossRef C. Swenson: Recommended values for the thermal expansivity of silicon from 0 to 1000 K, J. Phys. Chem. Ref. Data 12, 179–182 (1983)CrossRef
go back to reference H. Watanabe, N. Yamada, O. Masahiro: Linear thermal expansion coefficient of silicon from 293 to 1000 K, Int. J. Thermophys. 25, 221–236 (2004)CrossRef H. Watanabe, N. Yamada, O. Masahiro: Linear thermal expansion coefficient of silicon from 293 to 1000 K, Int. J. Thermophys. 25, 221–236 (2004)CrossRef
go back to reference J.S. Olcott: Chemical strengthening of glass, Science 140, 1189–1193 (1963)CrossRef J.S. Olcott: Chemical strengthening of glass, Science 140, 1189–1193 (1963)CrossRef
go back to reference P. Bocko, C. Rosenblatt, L. Morse: Chemical durability and cleaning of flat panel display substrate glasses, SID Symp. Dig. Tech. Pap. 21, 73 (1990) P. Bocko, C. Rosenblatt, L. Morse: Chemical durability and cleaning of flat panel display substrate glasses, SID Symp. Dig. Tech. Pap. 21, 73 (1990)
go back to reference B.G. Aitken, M.J. Dejneka, A.J. Ellison, T.E. Paulson: High strain point glasses, Patent US7612004 (2009) B.G. Aitken, M.J. Dejneka, A.J. Ellison, T.E. Paulson: High strain point glasses, Patent US7612004 (2009)
go back to reference Y.Q. Jia: Crystal radii and effective ionic radii of the rare earth ions, J. Solid State Chem. 95, 184–187 (1991)CrossRef Y.Q. Jia: Crystal radii and effective ionic radii of the rare earth ions, J. Solid State Chem. 95, 184–187 (1991)CrossRef
go back to reference R.D. Shannon, C.T. Prewitt: Effective ionic radii in oxides and fluorides, Acta Crystallogr. B 25, 925 (1969)CrossRef R.D. Shannon, C.T. Prewitt: Effective ionic radii in oxides and fluorides, Acta Crystallogr. B 25, 925 (1969)CrossRef
go back to reference P.S. Danielson, M. Dejneka, A. Ellison, T.J. Kiczenski: Rare earth containing glass material and substrate and device comprising such substrate, Patent US8187715 (2012) P.S. Danielson, M. Dejneka, A. Ellison, T.J. Kiczenski: Rare earth containing glass material and substrate and device comprising such substrate, Patent US8187715 (2012)
go back to reference E. Downing, L. Hesselink, J. Ralson, R. Macfarlane: A three-color, solid-state, three-dimensional display, Science 273, 1185 (1996)CrossRef E. Downing, L. Hesselink, J. Ralson, R. Macfarlane: A three-color, solid-state, three-dimensional display, Science 273, 1185 (1996)CrossRef
go back to reference M. Dejneka: Transparent oxyfluoride glass ceramics, MRS Bulletin 23, 57–62 (1998)CrossRef M. Dejneka: Transparent oxyfluoride glass ceramics, MRS Bulletin 23, 57–62 (1998)CrossRef
go back to reference M.J. Dejneka: The luminescence and structure of novel transparent oxyfluoride glass-ceramics, J. Non-Cryst. Solids 239, 149–155 (1998)CrossRef M.J. Dejneka: The luminescence and structure of novel transparent oxyfluoride glass-ceramics, J. Non-Cryst. Solids 239, 149–155 (1998)CrossRef
go back to reference K.P. Gadkaree, M.J. Dejneka, A.J. Ellison: Substrate compositions and methods for forming semiconductor on insulator devices, Patent US8530998B2 (2013) K.P. Gadkaree, M.J. Dejneka, A.J. Ellison: Substrate compositions and methods for forming semiconductor on insulator devices, Patent US8530998B2 (2013)
go back to reference B.G. Aitken, M.J. Dejneka, K.P. Gadkaree, L.R. Pinckney: High strain glass/glass-ceramic containing semiconductor-on-insulator structures, Patent US7473969B2 (2009) B.G. Aitken, M.J. Dejneka, K.P. Gadkaree, L.R. Pinckney: High strain glass/glass-ceramic containing semiconductor-on-insulator structures, Patent US7473969B2 (2009)
go back to reference K.P. Gadkaree, P.S. Danielson, M.J. Dejneka, J.C. Lapp, L.R. Pinckney: Germanium on glass and glass-ceramic structures, Patent US7456057B2 (2008) K.P. Gadkaree, P.S. Danielson, M.J. Dejneka, J.C. Lapp, L.R. Pinckney: Germanium on glass and glass-ceramic structures, Patent US7456057B2 (2008)
go back to reference S. Garner: Introduction to flexible glass substrates. In: Flexible Glass, ed. by S. Garner (Wiley, Hoboken 2017) pp. 3–33CrossRef S. Garner: Introduction to flexible glass substrates. In: Flexible Glass, ed. by S. Garner (Wiley, Hoboken 2017) pp. 3–33CrossRef
go back to reference Corning Glass Works: An electronic overcoat. In: Sand and Imagination (Corning Glass Works, Corning 1976) pp. 28–30 Corning Glass Works: An electronic overcoat. In: Sand and Imagination (Corning Glass Works, Corning 1976) pp. 28–30
go back to reference S. Sisk, J. Koh, P. Su, B. Bowden: Corning Lotus™ NXT Glass, Through its Advantaged and Balanced Glass Attributes, was Designed to Address the Challenges of Today's LTPS-OLED Manufacturing Processes, Corning White Paper (Corning Inc, Corning 2016) S. Sisk, J. Koh, P. Su, B. Bowden: Corning Lotus™ NXT Glass, Through its Advantaged and Balanced Glass Attributes, was Designed to Address the Challenges of Today's LTPS-OLED Manufacturing Processes, Corning White Paper (Corning Inc, Corning 2016)
go back to reference T.M. Gross, R. Youngman: Low modulus, damage resistant glass for ultra-thin applications. In: Flexible Glass, ed. by S. Garner (Wiley, Hoboken 2017) pp. 63–84CrossRef T.M. Gross, R. Youngman: Low modulus, damage resistant glass for ultra-thin applications. In: Flexible Glass, ed. by S. Garner (Wiley, Hoboken 2017) pp. 63–84CrossRef
Metadata
Title
Display Glass
Authors
Matt Dejneka
T. J. Kiczenski
Copyright Year
2019
Publisher
Springer International Publishing
DOI
https://doi.org/10.1007/978-3-319-93728-1_45

Premium Partners