Skip to main content
Top
Published in: Distributed Computing 5/2016

01-10-2016

Distributed algorithms for barrier coverage using relocatable sensors

Authors: Mohsen Eftekhari, Evangelos Kranakis, Danny Krizanc, Oscar Morales-Ponce, Lata Narayanan, Jaroslav Opatrny, Sunil Shende

Published in: Distributed Computing | Issue 5/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We study the barrier coverage problem using relocatable sensor nodes. We assume each sensor can sense an intruder or event inside its sensing range. Sensors are initially located at arbitrary positions on the barrier and can move along the barrier. The goal is to find final positions for sensors so that the entire barrier is covered. In recent years, the problem has been studied extensively in the centralized setting. In this paper, we study a barrier coverage problem in the distributed and discrete setting. We assume that we have n identical sensors located at grid positions on the barrier, and that each sensor repeatedly executes a Look-Compute-Move cycle: based on what it sees in its vicinity, it makes a decision on where to move, and moves to its next position. We make two strong but realistic restrictions on the capabilities of sensors: they have a constant visibility range and can move only a constant distance in every cycle. In this model, we give the first two distributed algorithms that achieve barrier coverage for a line segment barrier when there are enough nodes in the network to cover the entire barrier. Our algorithms are synchronous, and local in the sense that sensors make their decisions independently based only on what they see within their constant visibility range. One of our algorithms is oblivious whereas the other uses two bits of memory at each sensor to store the type of move made in the previous step. We show that our oblivious algorithm terminates within \(\varTheta (n^2)\) steps with the barrier fully covered, while the constant-memory algorithm is shown to take \(\varTheta (n)\) steps to terminate in the worst case. Since any algorithm in which a sensor can only move a constant distance in one step requires \(\varOmega (n)\) steps on some inputs, our second algorithm is asymptotically optimal.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Ando, H., Suzuki, I., Yamashita, M.: Formation and agreement problems for synchronous mobile robots with limited visibility. In: Proceedings of IEEE international symposium on intelligent control, pp. 453–460 (1995) Ando, H., Suzuki, I., Yamashita, M.: Formation and agreement problems for synchronous mobile robots with limited visibility. In: Proceedings of IEEE international symposium on intelligent control, pp. 453–460 (1995)
2.
go back to reference Balister, P., Bollobas, B., Sarkar, A., Kumar, S.: Reliable density estimates for coverage and connectivity in thin strips of finite length. In: Proceedings of MobiCom’07, pp. 75–86 (2007) Balister, P., Bollobas, B., Sarkar, A., Kumar, S.: Reliable density estimates for coverage and connectivity in thin strips of finite length. In: Proceedings of MobiCom’07, pp. 75–86 (2007)
3.
go back to reference Bhattacharya, B., Burmester, M., Hu, Y., Kranakis, E., Shi, Q., Wiese, A.: Optimal movement of mobile sensors for barrier coverage of a planar region. Theor. Comput. Sci. 410(52), 5515–5528 (2009)MathSciNetCrossRefMATH Bhattacharya, B., Burmester, M., Hu, Y., Kranakis, E., Shi, Q., Wiese, A.: Optimal movement of mobile sensors for barrier coverage of a planar region. Theor. Comput. Sci. 410(52), 5515–5528 (2009)MathSciNetCrossRefMATH
4.
go back to reference Chen, D.Z., Gu, Y., Li, J., Wang, H.: Algorithms on minimizing the maximum sensor movement for barrier coverage of a linear domain. In: Proceedings of SWAT’12, pp. 177–188 (2012) Chen, D.Z., Gu, Y., Li, J., Wang, H.: Algorithms on minimizing the maximum sensor movement for barrier coverage of a linear domain. In: Proceedings of SWAT’12, pp. 177–188 (2012)
5.
go back to reference Cohen, R., Peleg, D.: Local algorithms for autonomous robots systems. In: Proceedings of SIROCCO’06, LNCS v. 4056, pp. 29–43 (2006) Cohen, R., Peleg, D.: Local algorithms for autonomous robots systems. In: Proceedings of SIROCCO’06, LNCS v. 4056, pp. 29–43 (2006)
6.
go back to reference Czyzowicz, J., Gasieniec, L., Pelc, A.: Gathering few fat mobile robots in the plane. Theor. Comput. Sci. 410(6–7), 481–499 (2009)MathSciNetCrossRefMATH Czyzowicz, J., Gasieniec, L., Pelc, A.: Gathering few fat mobile robots in the plane. Theor. Comput. Sci. 410(6–7), 481–499 (2009)MathSciNetCrossRefMATH
7.
go back to reference Czyzowicz, J., Kranakis, E., Krizanc, D., Lambadaris, I., Narayanan, L., Opatrny, J., Stacho, L., Urrutia, J., Yazdani, M.: On minimizing the maximum sensor movement for barrier coverage of a line segment. In: Proceedings of ADHOC-NOW, LNCS v. 5793, pp. 194–212 (2009) Czyzowicz, J., Kranakis, E., Krizanc, D., Lambadaris, I., Narayanan, L., Opatrny, J., Stacho, L., Urrutia, J., Yazdani, M.: On minimizing the maximum sensor movement for barrier coverage of a line segment. In: Proceedings of ADHOC-NOW, LNCS v. 5793, pp. 194–212 (2009)
8.
go back to reference Czyzowicz, J., Kranakis, E., Krizanc, D., Lambadaris, I., Narayanan, L., Opatrny, J., Stacho, L., Urrutia, J., Yazdani, M.: On minimizing the sum of sensor movements for barrier coverage of a line segment. In: Proceedings of ADHOC-NOW, LNCS v. 6288, pp. 29–42 (2010) Czyzowicz, J., Kranakis, E., Krizanc, D., Lambadaris, I., Narayanan, L., Opatrny, J., Stacho, L., Urrutia, J., Yazdani, M.: On minimizing the sum of sensor movements for barrier coverage of a line segment. In: Proceedings of ADHOC-NOW, LNCS v. 6288, pp. 29–42 (2010)
9.
go back to reference Datta, S., Dutta, A., Chaudhuri, S.C., Mukhopadhyaya, K.: Circle formation by asynchronous transparent fat robots. In: Proceedings of ICDCIT’13, pp. 195–207 (2013) Datta, S., Dutta, A., Chaudhuri, S.C., Mukhopadhyaya, K.: Circle formation by asynchronous transparent fat robots. In: Proceedings of ICDCIT’13, pp. 195–207 (2013)
10.
go back to reference Flocchini, P., Prencipe, G., Santoro, N.: Distributed Computing by Oblivious Mobile Robots: Synthesis Lectures on Distributed Computing Theory. Morgan and Claypool Publishers, San Rafael (2012)MATH Flocchini, P., Prencipe, G., Santoro, N.: Distributed Computing by Oblivious Mobile Robots: Synthesis Lectures on Distributed Computing Theory. Morgan and Claypool Publishers, San Rafael (2012)MATH
11.
go back to reference Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Gathering of asynchronous mobile robots with limited visibility. In: Proceedings of STACS’01, LNCS v. 2010, pp. 247–258 (2001) Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Gathering of asynchronous mobile robots with limited visibility. In: Proceedings of STACS’01, LNCS v. 2010, pp. 247–258 (2001)
12.
go back to reference Huang, C.F., Tseng, Y.C.: The coverage problem in a wireless sensor network. In: Proceedings of WSNA’03, pp. 115–121 (2003) Huang, C.F., Tseng, Y.C.: The coverage problem in a wireless sensor network. In: Proceedings of WSNA’03, pp. 115–121 (2003)
13.
go back to reference Kumar, S., Lai, T.H., Arora, A.: Barrier coverage with wireless sensors. In: Proceedings of MobiCom’05, pp. 284–298 (2005) Kumar, S., Lai, T.H., Arora, A.: Barrier coverage with wireless sensors. In: Proceedings of MobiCom’05, pp. 284–298 (2005)
14.
go back to reference Kumar, S., Lai, T.H., Balogh, J.: On \(k\)-coverage in a mostly sleeping sensor network. In: Proceedings of MobiCom’04, pp. 144–158 (2004) Kumar, S., Lai, T.H., Balogh, J.: On \(k\)-coverage in a mostly sleeping sensor network. In: Proceedings of MobiCom’04, pp. 144–158 (2004)
15.
go back to reference Matarić, M.: Interaction and intelligent behavior. PhD thesis, MIT (1994) Matarić, M.: Interaction and intelligent behavior. PhD thesis, MIT (1994)
16.
go back to reference Meguerdichian, S., Koushanfar, F., Potkonjak, M., Srivastava, M.B.: Coverage problems in wireless ad-hoc sensor networks. In: Proceedings of IEEE INFOCOM’01, pp. 1380–1387 (2001) Meguerdichian, S., Koushanfar, F., Potkonjak, M., Srivastava, M.B.: Coverage problems in wireless ad-hoc sensor networks. In: Proceedings of IEEE INFOCOM’01, pp. 1380–1387 (2001)
17.
go back to reference Mehrandish, M., Narayanan, L., Opatrny, J.: Minimizing the number of sensors moved on line barriers. In: Proceedings of IEEE WCNC’11, pp. 1464–1469 (2011) Mehrandish, M., Narayanan, L., Opatrny, J.: Minimizing the number of sensors moved on line barriers. In: Proceedings of IEEE WCNC’11, pp. 1464–1469 (2011)
18.
go back to reference Prencipe, G., Santoro, N.: Distributed algorithms for autonomous mobile robots. In: Proceedings 5th IFIP international conference on theoretical computer science (TCS’06), vol 209, pp. 47–62 (2006) Prencipe, G., Santoro, N.: Distributed algorithms for autonomous mobile robots. In: Proceedings 5th IFIP international conference on theoretical computer science (TCS’06), vol 209, pp. 47–62 (2006)
19.
go back to reference Shen, C., Cheng, W., Liao, X., Peng, S.: Barrier coverage with mobile sensors. In: Proceedings of I-SPAN’08, pp. 99–104 (2008) Shen, C., Cheng, W., Liao, X., Peng, S.: Barrier coverage with mobile sensors. In: Proceedings of I-SPAN’08, pp. 99–104 (2008)
20.
go back to reference Suzuki, I., Yamashita, M.: Distributed anonymous mobile robots: formation of geometric patterns. SIAM J. Comput. 28(4), 1347–1363 (1999)MathSciNetCrossRefMATH Suzuki, I., Yamashita, M.: Distributed anonymous mobile robots: formation of geometric patterns. SIAM J. Comput. 28(4), 1347–1363 (1999)MathSciNetCrossRefMATH
21.
go back to reference Yan, G., Qiao, D.: Multi-round sensor deployment for guaranteed barrier coverage. In: Proceedings of IEEE INFOCOM’10, pp. 2462–2470 (2010) Yan, G., Qiao, D.: Multi-round sensor deployment for guaranteed barrier coverage. In: Proceedings of IEEE INFOCOM’10, pp. 2462–2470 (2010)
Metadata
Title
Distributed algorithms for barrier coverage using relocatable sensors
Authors
Mohsen Eftekhari
Evangelos Kranakis
Danny Krizanc
Oscar Morales-Ponce
Lata Narayanan
Jaroslav Opatrny
Sunil Shende
Publication date
01-10-2016
Publisher
Springer Berlin Heidelberg
Published in
Distributed Computing / Issue 5/2016
Print ISSN: 0178-2770
Electronic ISSN: 1432-0452
DOI
https://doi.org/10.1007/s00446-016-0267-x

Other articles of this Issue 5/2016

Distributed Computing 5/2016 Go to the issue

Premium Partner