Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

06-07-2019 | Issue 8/2020

Wireless Networks 8/2020

Distributed machine learning load balancing strategy in cloud computing services

Journal:
Wireless Networks > Issue 8/2020
Authors:
Mingwei Li, Jilin Zhang, Jian Wan, Yongjian Ren, Li Zhou, Baofu Wu, Rui Yang, Jue Wang
Important notes

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

Mobile service computing is a new cloud computing model that provides various cloud services for mobile intelligent terminal users through mobile internet access. The quality of service is an essential problem faced by mobile service computing. In this paper, we demonstrate a series of research studies on how to accelerate the training of a distributed machine learning (ML) model based on cloud service. Distributed ML has become the mainstream way of today’s ML models training. In traditional distributed ML based on bulk synchronous parallel, the temporary slowdown of any node in the cluster will delay the calculation of other nodes because of the frequent occurrence of synchronous barriers, resulting in overall performance degradation. Our paper proposes a load balancing strategy named adaptive fast reassignment (AdaptFR). Based on this, we built a distributed parallel computing model called adaptive-dynamic synchronous parallel (A-DSP). A-DSP uses a more relaxed synchronization model to reduce the performance consumption caused by synchronous operations while ensuring the consistency of the model. At the same time, A-DSP also implements the AdaptFR load balancing strategy, which addresses the straggler problem caused by the performance difference between nodes under the premise of ensuring the accuracy of the model. The experiments show that A-DSP can effectively improve the training speed while ensuring the accuracy of the model in the distributed ML model training.

Please log in to get access to this content

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Literature
About this article

Other articles of this Issue 8/2020

Wireless Networks 8/2020 Go to the issue