Skip to main content
Top

2019 | OriginalPaper | Chapter

7. Distributed Real-Time Demand Response

Authors : Pengwei Du, Ning Lu, Haiwang Zhong

Published in: Demand Response in Smart Grids

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this chapter, a real-time demand response (DR) framework and model for a smart distribution grid is formulated. The model is optimized in a distributed manner with the Lagrangian relaxation (LR) method. Consumers adjust their own hourly load level in response to real-time prices (RTP) of electricity to maximize their utility. Because the convergence performance of existing distributed algorithms highly relies on the selection of the iteration step size and search direction, a novel approach termed Lagrangian multiplier optimal selection (LMOS) is proposed to overcome this difficulty. Via sensitivity analysis, the energy demand elasticity of consumers can be effectively estimated. Then the LMOS model can be established to optimize the Lagrangian multipliers in a relatively small linearized neighborhood. The salient feature of LMOS is its capability to optimally determine the Lagrangian multipliers during each iteration, which greatly improves the convergence performance of the distributed algorithm. Case studies based on a distribution grid with the number of consumers ranging from 10 to 100 demonstrate that the proposed method greatly outperforms the prevalent approaches, in terms of both efficiency and robustness.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Siano, P., & Sarno, D. (2016). Assessing the benefits of residential demand response in a real time distribution energy market. Applied Energy, 161, 533–551.CrossRef Siano, P., & Sarno, D. (2016). Assessing the benefits of residential demand response in a real time distribution energy market. Applied Energy, 161, 533–551.CrossRef
2.
go back to reference Yu, Z., Chen, S., & Tong, L. (2016). An intelligent energy management system for large-scale charging of electric vehicles. CSEE Journal of Power and Energy Systems, 2(1), 47–53.CrossRef Yu, Z., Chen, S., & Tong, L. (2016). An intelligent energy management system for large-scale charging of electric vehicles. CSEE Journal of Power and Energy Systems, 2(1), 47–53.CrossRef
3.
go back to reference Li, Z., Wu, W., Zhang, B., et al. (2013). Dynamic economic dispatch using Lagrangian relaxation with multiplier updates based on a quasi-Newton method. IEEE Transactions on Power Apparatus and Systems, 28(4), 4516–4527.CrossRef Li, Z., Wu, W., Zhang, B., et al. (2013). Dynamic economic dispatch using Lagrangian relaxation with multiplier updates based on a quasi-Newton method. IEEE Transactions on Power Apparatus and Systems, 28(4), 4516–4527.CrossRef
4.
go back to reference Lai, X., Xie, L., Xia, Q., et al. (2014). Decentralized multi-area economic dispatch via dynamic multiplier-based Lagrangian relaxation. IEEE Transactions on Power Apparatus and Systems, 30(6), 3225–3233.CrossRef Lai, X., Xie, L., Xia, Q., et al. (2014). Decentralized multi-area economic dispatch via dynamic multiplier-based Lagrangian relaxation. IEEE Transactions on Power Apparatus and Systems, 30(6), 3225–3233.CrossRef
5.
go back to reference Deng, R., Xiao, G., Lu, R., et al. (2015). Fast distributed demand response with spatially- and temporally- coupled constraints in smart grid. IEEE Transactions on Industrial Informatics, 11(6), 1597–1606.CrossRef Deng, R., Xiao, G., Lu, R., et al. (2015). Fast distributed demand response with spatially- and temporally- coupled constraints in smart grid. IEEE Transactions on Industrial Informatics, 11(6), 1597–1606.CrossRef
6.
go back to reference Xing, H., Cheng, H., & Zhang, L. (2015). Demand response based and wind farm integrated economic dispatch. CSEE Journal of Power and Energy Systems, 1(4), 47–51.CrossRef Xing, H., Cheng, H., & Zhang, L. (2015). Demand response based and wind farm integrated economic dispatch. CSEE Journal of Power and Energy Systems, 1(4), 47–51.CrossRef
7.
go back to reference Arteconi, A., Patteeuw, D., Bruninx, K., et al. (2016). Active demand response with electric heating systems: Impact of market penetration. Applied Energy, 177, 636–648.CrossRef Arteconi, A., Patteeuw, D., Bruninx, K., et al. (2016). Active demand response with electric heating systems: Impact of market penetration. Applied Energy, 177, 636–648.CrossRef
8.
go back to reference Nolan, S., & O’Malley, M. (2015). Challenges and barriers to demand response deployment and evaluation. Applied Energy, 152, 1–10.CrossRef Nolan, S., & O’Malley, M. (2015). Challenges and barriers to demand response deployment and evaluation. Applied Energy, 152, 1–10.CrossRef
9.
go back to reference Sheikhi, A., Rayati, M., Bahrami, S., et al. (2015). Integrated demand side management game in smart energy hubs. IEEE Transactions on Smart Grid, 6(2), 675–683.CrossRef Sheikhi, A., Rayati, M., Bahrami, S., et al. (2015). Integrated demand side management game in smart energy hubs. IEEE Transactions on Smart Grid, 6(2), 675–683.CrossRef
10.
go back to reference Wang, Q., Zhang, C., Ding, Y., et al. (2015). Review of real-time electricity markets for integrating distributed energy resources and demand response. Applied Energy, 138, 695–706.CrossRef Wang, Q., Zhang, C., Ding, Y., et al. (2015). Review of real-time electricity markets for integrating distributed energy resources and demand response. Applied Energy, 138, 695–706.CrossRef
11.
go back to reference Chen, S., & Liu, C. (2017). From demand response to transactive energy: State-of-the-art. Journal of Modern Power Systems and Clean Energy, 5(1), 10–19.MathSciNetCrossRef Chen, S., & Liu, C. (2017). From demand response to transactive energy: State-of-the-art. Journal of Modern Power Systems and Clean Energy, 5(1), 10–19.MathSciNetCrossRef
12.
go back to reference Papadaskalopoulos, D., & Strbac, G. (2013). Decentralized participation of flexible demand in electricity markets-part I: Market mechanism. IEEE Transactions on Power Apparatus and Systems, 28(4), 3658–3666.CrossRef Papadaskalopoulos, D., & Strbac, G. (2013). Decentralized participation of flexible demand in electricity markets-part I: Market mechanism. IEEE Transactions on Power Apparatus and Systems, 28(4), 3658–3666.CrossRef
13.
go back to reference Fan, Z. (2012). A distributed demand response algorithm and its application to PHEV charging in smart grids. IEEE Transactions on Smart Grid, 3(3), 1280–1290.CrossRef Fan, Z. (2012). A distributed demand response algorithm and its application to PHEV charging in smart grids. IEEE Transactions on Smart Grid, 3(3), 1280–1290.CrossRef
14.
go back to reference Zhong, H., Xie, L., Xia, Q., et al. (2013). Coupon incentive-based demand response: Theory and case study. IEEE Transactions on Power Apparatus and Systems, 28(2), 1266–1276.CrossRef Zhong, H., Xie, L., Xia, Q., et al. (2013). Coupon incentive-based demand response: Theory and case study. IEEE Transactions on Power Apparatus and Systems, 28(2), 1266–1276.CrossRef
15.
go back to reference Finn, P., & Fitzpatrick, C. (2014). Demand side management of industrial electricity consumption: Promoting the use of renewable energy through real-time pricing. Applied Energy, 113, 11–21.CrossRef Finn, P., & Fitzpatrick, C. (2014). Demand side management of industrial electricity consumption: Promoting the use of renewable energy through real-time pricing. Applied Energy, 113, 11–21.CrossRef
16.
go back to reference Behboodi, S., Chassin, D., Crawford, C., et al. (2016). Renewable resources portfolio optimization in the presence of demand response. Applied Energy, 162, 139–148.CrossRef Behboodi, S., Chassin, D., Crawford, C., et al. (2016). Renewable resources portfolio optimization in the presence of demand response. Applied Energy, 162, 139–148.CrossRef
17.
go back to reference Deng, R., Yang, Z., Hou, F., et al. (2015). Distributed real-time demand response in multiseller-multibuyer smart distribution grid. IEEE Transactions on Power Apparatus and Systems, 30(5), 2364–2374.CrossRef Deng, R., Yang, Z., Hou, F., et al. (2015). Distributed real-time demand response in multiseller-multibuyer smart distribution grid. IEEE Transactions on Power Apparatus and Systems, 30(5), 2364–2374.CrossRef
18.
go back to reference Chen, C., Wang, J., & Kishore, S. (2014). A distributed direct load control approach for large-scale residential demand response. IEEE Transactions on Power Apparatus and Systems, 29(5), 2219–2228.CrossRef Chen, C., Wang, J., & Kishore, S. (2014). A distributed direct load control approach for large-scale residential demand response. IEEE Transactions on Power Apparatus and Systems, 29(5), 2219–2228.CrossRef
19.
go back to reference Safdarian, A., Firruzabad, M., & Lehtonen, M. (2014). A distributed algorithm for managing residential demand response in smart grids. IEEE Transactions on Industrial Informatics, 10(4), 2385–2393.CrossRef Safdarian, A., Firruzabad, M., & Lehtonen, M. (2014). A distributed algorithm for managing residential demand response in smart grids. IEEE Transactions on Industrial Informatics, 10(4), 2385–2393.CrossRef
20.
go back to reference Mazidi, M., Monsef, H., & Siano, P. (2016). Robust day-ahead scheduling of smart distribution networks considering demand response programs. Applied Energy, 178, 929–942.CrossRef Mazidi, M., Monsef, H., & Siano, P. (2016). Robust day-ahead scheduling of smart distribution networks considering demand response programs. Applied Energy, 178, 929–942.CrossRef
21.
go back to reference Ongsakul, W., & Petcharaks, N. (2004). Unit commitment by enhanced adaptive Lagrangian relaxation. IEEE Transactions on Power Apparatus and Systems, 19(1), 620–628.CrossRef Ongsakul, W., & Petcharaks, N. (2004). Unit commitment by enhanced adaptive Lagrangian relaxation. IEEE Transactions on Power Apparatus and Systems, 19(1), 620–628.CrossRef
22.
go back to reference Conejo, A., Morales, J., & Baringo, L. (2010). Real-time demand response model. IEEE Transactions on Smart Grid, 1(3), 236–242.CrossRef Conejo, A., Morales, J., & Baringo, L. (2010). Real-time demand response model. IEEE Transactions on Smart Grid, 1(3), 236–242.CrossRef
23.
go back to reference Forushani, E., Moghaddam, M., Sheikh-El-Eslami, M., et al. (2014). Risk- constrained offering strategy of wind power producers considering intraday demand response exchange. IEEE Transactions on Sustainable Energy, 5(4), 1036–1047.CrossRef Forushani, E., Moghaddam, M., Sheikh-El-Eslami, M., et al. (2014). Risk- constrained offering strategy of wind power producers considering intraday demand response exchange. IEEE Transactions on Sustainable Energy, 5(4), 1036–1047.CrossRef
24.
go back to reference Kazemi, M., Mohammadi-Ivatloo, B., & Ehsan, M. (2015). Risk-constrained strategic bidding of gencos considering demand response. IEEE Transactions on Power Apparatus and Systems, 30(1), 376–384.CrossRef Kazemi, M., Mohammadi-Ivatloo, B., & Ehsan, M. (2015). Risk-constrained strategic bidding of gencos considering demand response. IEEE Transactions on Power Apparatus and Systems, 30(1), 376–384.CrossRef
25.
go back to reference Wei, W., Liu, F., & Mei, S. (2015). Energy pricing and dispatch for smart grid retailers under demand response and market price uncertainty. IEEE Transactions on Smart Grid, 6(3), 1364–1374.CrossRef Wei, W., Liu, F., & Mei, S. (2015). Energy pricing and dispatch for smart grid retailers under demand response and market price uncertainty. IEEE Transactions on Smart Grid, 6(3), 1364–1374.CrossRef
26.
go back to reference Epstein, L. G., & Zin, S. E. (1991). Substitution, risk aversion, and the temporal behavior of consumption and asset returns: An empirical analysis. Journal of Political Economy, 99, 263–286.CrossRef Epstein, L. G., & Zin, S. E. (1991). Substitution, risk aversion, and the temporal behavior of consumption and asset returns: An empirical analysis. Journal of Political Economy, 99, 263–286.CrossRef
27.
go back to reference Gountis, P. V., & Bakirtzis, G. A. (2004). Bidding strategies for electricity producers in a competitive electricity marketplace. IEEE Transactions on Power Apparatus and Systems, 19(1), 356–365.CrossRef Gountis, P. V., & Bakirtzis, G. A. (2004). Bidding strategies for electricity producers in a competitive electricity marketplace. IEEE Transactions on Power Apparatus and Systems, 19(1), 356–365.CrossRef
28.
go back to reference Fahrioglu, M., & Alvarado, L. F. (2001). Using utility information to calibrate customer demand management behavior models. IEEE Transactions on Power Apparatus and Systems, 16(2), 317–322.CrossRef Fahrioglu, M., & Alvarado, L. F. (2001). Using utility information to calibrate customer demand management behavior models. IEEE Transactions on Power Apparatus and Systems, 16(2), 317–322.CrossRef
29.
go back to reference Harrison, G. W. (2008). Maximum likelihood estimation of utility functions using Stata. University of Central Florida, Working Chapter. 6–12. Harrison, G. W. (2008). Maximum likelihood estimation of utility functions using Stata. University of Central Florida, Working Chapter. 6–12.
30.
go back to reference Ratliff, L. J., Dong, R., Ohlsson, H., & Sastry, S. S. (2014). Incentive design and utility learning via energy disaggregation. IFAC Proceedings Volumes, 47(3), 3158–3163.CrossRef Ratliff, L. J., Dong, R., Ohlsson, H., & Sastry, S. S. (2014). Incentive design and utility learning via energy disaggregation. IFAC Proceedings Volumes, 47(3), 3158–3163.CrossRef
31.
go back to reference Li, F., & Bo, R. (2007). DCOPF-based LMP simulation: Algorithm, comparison with ACOPF, and sensitivity. IEEE Transactions on Power Apparatus and Systems, 22(4), 1475–1485.CrossRef Li, F., & Bo, R. (2007). DCOPF-based LMP simulation: Algorithm, comparison with ACOPF, and sensitivity. IEEE Transactions on Power Apparatus and Systems, 22(4), 1475–1485.CrossRef
34.
go back to reference Zhu, M., & Martinez, S. (2012). On distributed convex optimization under inequality and equality constraints. IEEE Transactions on Automatic Control, 57(1), 151–164.MathSciNetCrossRef Zhu, M., & Martinez, S. (2012). On distributed convex optimization under inequality and equality constraints. IEEE Transactions on Automatic Control, 57(1), 151–164.MathSciNetCrossRef
35.
go back to reference Roh, H., & Lee, J. (2016). Residential demand response scheduling with multiclass appliances in the smart grid. IEEE Transactions on Smart Grid, 7(1), 94–104.CrossRef Roh, H., & Lee, J. (2016). Residential demand response scheduling with multiclass appliances in the smart grid. IEEE Transactions on Smart Grid, 7(1), 94–104.CrossRef
37.
go back to reference Bibby, J. (1974). Axiomatisations of the average and a further generalisation of monotonic sequences. Glasgow Mathematical Journal, 15(1), 63–65.MathSciNetCrossRef Bibby, J. (1974). Axiomatisations of the average and a further generalisation of monotonic sequences. Glasgow Mathematical Journal, 15(1), 63–65.MathSciNetCrossRef
38.
go back to reference Bertsekas D. (1999). Nonlinear programming. Athena Scientific. Bertsekas D. (1999). Nonlinear programming. Athena Scientific.
Metadata
Title
Distributed Real-Time Demand Response
Authors
Pengwei Du
Ning Lu
Haiwang Zhong
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-030-19769-8_7