Skip to main content
Top
Published in: Flow, Turbulence and Combustion 3/2018

16-10-2017

Distributed Roughness Effects on Transitional and Turbulent Boundary Layers

Authors: Nagabhushana Rao Vadlamani, Paul G. Tucker, Paul Durbin

Published in: Flow, Turbulence and Combustion | Issue 3/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A numerical investigation is carried out to study the transition of a subsonic boundary layer on a flat plate with roughness elements distributed over the entire surface. Post-transition, the effect of surface roughness on a spatially developing turbulent boundary layer (TBL) is explored. In the transitional regime, the onset of flow transition predicted by the current simulations is in agreement with the experimentally based correlations proposed in the literature. Transition mechanisms are shown to change significantly with the increasing roughness height. Roughness elements that are inside the boundary layer create an elevated shear layer and alternating high and low speed streaks near the wall. Secondary sinuous instabilities on the streaks destabilize the shear layer promoting transition to turbulence. For the roughness topology considered, it is observed that the instability wavelengths are governed by the streamwise and spanwise spacing between the roughness elements. In contrast, the roughness elements that are higher than the boundary layer create turbulent wakes in their lee. The scale of instability is much shorter and transition occurs due to the shedding from the obstacles. Post-transition, in the spatially developing TBL, the velocity defect profiles for both the smooth and rough walls collapsed when non dimensionalized in the outer units. However, when compared to the smooth wall, deviation in the Reynolds stresses are observable in the outer layer; the deviation being higher for the larger roughness elements.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Footnotes
1
Note that in some publications, (ξ 1,ξ 2,ξ 3) are represented as (ξ,η,ζ) and (x 1,x 2,x 3) as (x,y,z)
 
2
We have also carried out additional simulations to explore the effects of free-stream turbulence (FST). However, this is beyond the scope of the current paper and will be published elsewhere.
 
3
In the case of regularly distributed roughness, u can also be defined by subtracting the instantaneous flow from the flow field averaged over multiple roughness elements at identical phase. However, this approach is not feasible for randomly distributed roughness.
 
4
Note: The low-speed streak situated mid-way between the roughness peaks in Fig. 11a is due to the peaks of the roughness element at an upstream location (refer to the computational domain in Fig. 1)
 
Literature
1.
go back to reference Bons, J.P.: A review of surface roughness effects in gas turbines. J. Turbomach. 132(2), 021,004 (2010)CrossRef Bons, J.P.: A review of surface roughness effects in gas turbines. J. Turbomach. 132(2), 021,004 (2010)CrossRef
2.
go back to reference Rao, V.N., Jefferson-Loveday, R., Tucker, P.G., Lardeau, S.: Large eddy simulations in turbines: influence of roughness and free-stream turbulence. Flow Turbul. Combust. 92(1-2), 543–561 (2014)CrossRef Rao, V.N., Jefferson-Loveday, R., Tucker, P.G., Lardeau, S.: Large eddy simulations in turbines: influence of roughness and free-stream turbulence. Flow Turbul. Combust. 92(1-2), 543–561 (2014)CrossRef
4.
go back to reference Braslow, A.L.: Review of the Effect of Distributed Surface Roughness on Boundary-Layer Transition. Tech. rep., DTIC Document (1960) Braslow, A.L.: Review of the Effect of Distributed Surface Roughness on Boundary-Layer Transition. Tech. rep., DTIC Document (1960)
5.
go back to reference Montomoli, F., Hodson, H., Haselbach, F.: Effect of roughness and unsteadiness on the performance of a new low pressure turbine blade at low reynolds numbers. J. Turbomach. 132(3), 031,018 (2010)CrossRef Montomoli, F., Hodson, H., Haselbach, F.: Effect of roughness and unsteadiness on the performance of a new low pressure turbine blade at low reynolds numbers. J. Turbomach. 132(3), 031,018 (2010)CrossRef
6.
go back to reference Stripf, M., Schulz, A., Bauer, H.J., Wittig, S.: Extended models for transitional rough wall boundary layers with heat transfer—part i: model formulations. J. Turbomach. 131(3), 031,016 (2009)CrossRef Stripf, M., Schulz, A., Bauer, H.J., Wittig, S.: Extended models for transitional rough wall boundary layers with heat transfer—part i: model formulations. J. Turbomach. 131(3), 031,016 (2009)CrossRef
7.
go back to reference De Tullio, N., Paredes, P., Sandham, N., Theofilis, V.: Laminar–turbulent transition induced by a discrete roughness element in a supersonic boundary layer. J. Fluid Mech. 735, 613–646 (2013)MathSciNetCrossRefMATH De Tullio, N., Paredes, P., Sandham, N., Theofilis, V.: Laminar–turbulent transition induced by a discrete roughness element in a supersonic boundary layer. J. Fluid Mech. 735, 613–646 (2013)MathSciNetCrossRefMATH
8.
go back to reference Bernardini, M., Pirozzoli, S., Orlandi, P.: Compressibility effects on roughness-induced boundary layer transition. Int. J. Heat Fluid Flow 35, 45–51 (2012)CrossRef Bernardini, M., Pirozzoli, S., Orlandi, P.: Compressibility effects on roughness-induced boundary layer transition. Int. J. Heat Fluid Flow 35, 45–51 (2012)CrossRef
9.
go back to reference Iyer, P., Muppidi, S., Mahesh, K.: Roughness-induced transition in high speed flows. In: 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, p. 566 (2011) Iyer, P., Muppidi, S., Mahesh, K.: Roughness-induced transition in high speed flows. In: 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, p. 566 (2011)
10.
go back to reference Redford, J.A., Sandham, N.D., Roberts, G.T.: Compressibility effects on boundary-layer transition induced by an isolated roughness element. AIAA J. 48(12), 2818–2830 (2010)CrossRef Redford, J.A., Sandham, N.D., Roberts, G.T.: Compressibility effects on boundary-layer transition induced by an isolated roughness element. AIAA J. 48(12), 2818–2830 (2010)CrossRef
11.
go back to reference Muppidi, S., Mahesh, K.: Direct numerical simulations of roughness-induced transition in supersonic boundary layers. J. Fluid Mech. 693, 28–56 (2012)CrossRefMATH Muppidi, S., Mahesh, K.: Direct numerical simulations of roughness-induced transition in supersonic boundary layers. J. Fluid Mech. 693, 28–56 (2012)CrossRefMATH
12.
go back to reference Roberts, S., Yaras, M.: Boundary-layer transition affected by surface roughness and free-stream turbulence. J. Fluids Eng. 127(3), 449–457 (2005)CrossRef Roberts, S., Yaras, M.: Boundary-layer transition affected by surface roughness and free-stream turbulence. J. Fluids Eng. 127(3), 449–457 (2005)CrossRef
13.
go back to reference Nikuradse, J.: Laws of flow in rough pipes. In: VDI Forschungsheft. Citeseer (1933) Nikuradse, J.: Laws of flow in rough pipes. In: VDI Forschungsheft. Citeseer (1933)
14.
go back to reference Townsend, A.A.: The Structure of Turbulent Shear Flow. Cambridge University Press, Cambridge (1980)MATH Townsend, A.A.: The Structure of Turbulent Shear Flow. Cambridge University Press, Cambridge (1980)MATH
16.
go back to reference Leonardi, S., Orlandi, P., Smalley, R., Djenidi, L., Antonia, R.: Direct numerical simulations of turbulent channel flow with transverse square bars on one wall. J. Fluid Mech. 491, 229–238 (2003)CrossRefMATH Leonardi, S., Orlandi, P., Smalley, R., Djenidi, L., Antonia, R.: Direct numerical simulations of turbulent channel flow with transverse square bars on one wall. J. Fluid Mech. 491, 229–238 (2003)CrossRefMATH
17.
go back to reference Chung, D., Chan, L., MacDonald, M., Hutchins, N., Ooi, A.: A fast direct numerical simulation method for characterising hydraulic roughness. J. Fluid Mech. 773, 418–431 (2015)CrossRef Chung, D., Chan, L., MacDonald, M., Hutchins, N., Ooi, A.: A fast direct numerical simulation method for characterising hydraulic roughness. J. Fluid Mech. 773, 418–431 (2015)CrossRef
18.
go back to reference Chatzikyriakou, D., Buongiorno, J., Caviezel, D., Lakehal, D.: Dns and les of turbulent flow in a closed channel featuring a pattern of hemispherical roughness elements. Int. J. Heat Fluid Flow 53, 29–43 (2015)CrossRef Chatzikyriakou, D., Buongiorno, J., Caviezel, D., Lakehal, D.: Dns and les of turbulent flow in a closed channel featuring a pattern of hemispherical roughness elements. Int. J. Heat Fluid Flow 53, 29–43 (2015)CrossRef
19.
go back to reference Licari, A., Christensen, K.: Modeling cumulative surface damage and assessing its impact on wall turbulence. AIAA J. 49(10), 2305–2320 (2011)CrossRef Licari, A., Christensen, K.: Modeling cumulative surface damage and assessing its impact on wall turbulence. AIAA J. 49(10), 2305–2320 (2011)CrossRef
20.
go back to reference Yuan, J., Piomelli, U.: Estimation and prediction of the roughness function on realistic surfaces. J. Turbul. 15(6), 350–365 (2014)MathSciNetCrossRef Yuan, J., Piomelli, U.: Estimation and prediction of the roughness function on realistic surfaces. J. Turbul. 15(6), 350–365 (2014)MathSciNetCrossRef
21.
go back to reference Lee, J.H., Sung, H.J., Krogstad, P.Å.: Direct numerical simulation of the turbulent boundary layer over a cube-roughened wall. J. Fluid Mech. 669, 397–431 (2011)CrossRefMATH Lee, J.H., Sung, H.J., Krogstad, P.Å.: Direct numerical simulation of the turbulent boundary layer over a cube-roughened wall. J. Fluid Mech. 669, 397–431 (2011)CrossRefMATH
22.
go back to reference Lee, S.H., Sung, H.J.: Direct numerical simulation of the turbulent boundary layer over a rod-roughened wall. J. Fluid Mech. 584, 125–146 (2007)CrossRefMATH Lee, S.H., Sung, H.J.: Direct numerical simulation of the turbulent boundary layer over a rod-roughened wall. J. Fluid Mech. 584, 125–146 (2007)CrossRefMATH
23.
go back to reference Simens, M.P., Gungor, A.G.: The effect of surface roughness on laminar separated boundary layers. J. Turbomach. 136(3), 031,014 (2014)CrossRef Simens, M.P., Gungor, A.G.: The effect of surface roughness on laminar separated boundary layers. J. Turbomach. 136(3), 031,014 (2014)CrossRef
24.
go back to reference Sengupta, A., Vadlamani, N.R., Tucker, P.G.: Roughness induced transition in low pressure turbines. In: 55th AIAA Aerospace Sciences Meeting, p. 0303 (2017) Sengupta, A., Vadlamani, N.R., Tucker, P.G.: Roughness induced transition in low pressure turbines. In: 55th AIAA Aerospace Sciences Meeting, p. 0303 (2017)
25.
go back to reference Vadlamani, N.R.: Numerical Investigation of Separated Flows in Low Pressure Turbines. Ph.D. thesis, University of Cambridge (2014) Vadlamani, N.R.: Numerical Investigation of Separated Flows in Low Pressure Turbines. Ph.D. thesis, University of Cambridge (2014)
26.
go back to reference Rao, V.N., Tucker, P., Jefferson-Loveday, R., Coull, J.: Investigation of wake induced transition in low-pressure turbines using large eddy simulation. In: ASME Turbo Expo 2013: Turbine Technical Conference and Exposition, pp. V06CT42A008–V06CT42A008. American Society of Mechanical Engineers (2013) Rao, V.N., Tucker, P., Jefferson-Loveday, R., Coull, J.: Investigation of wake induced transition in low-pressure turbines using large eddy simulation. In: ASME Turbo Expo 2013: Turbine Technical Conference and Exposition, pp. V06CT42A008–V06CT42A008. American Society of Mechanical Engineers (2013)
27.
go back to reference Matsuura, K., Kato, C.: Large-eddy simulation of compressible transitional flows in a low-pressure turbine cascade. AIAA J. 45(2), 442–457 (2007)CrossRef Matsuura, K., Kato, C.: Large-eddy simulation of compressible transitional flows in a low-pressure turbine cascade. AIAA J. 45(2), 442–457 (2007)CrossRef
28.
go back to reference Rizzetta, D.P., Visbal, M.R.: Direct numerical simulations of flow past an array of distributed roughness elements. AIAA J. 45(8), 1967–1976 (2007)CrossRef Rizzetta, D.P., Visbal, M.R.: Direct numerical simulations of flow past an array of distributed roughness elements. AIAA J. 45(8), 1967–1976 (2007)CrossRef
29.
go back to reference Visbal, M.R., Gaitonde, D.V.: Very high-order spatially implicit schemes for computational acoustics on curvilinear meshes. J. Comput. Acoust. 9(04), 1259–1286 (2001)MathSciNetCrossRefMATH Visbal, M.R., Gaitonde, D.V.: Very high-order spatially implicit schemes for computational acoustics on curvilinear meshes. J. Comput. Acoust. 9(04), 1259–1286 (2001)MathSciNetCrossRefMATH
30.
go back to reference Leonardi, S., Orlandi, P., Antonia, R.A.: Properties of d-and k-type roughness in a turbulent channel flow. Phys. Fluids 19(12), 125,101 (2007)CrossRefMATH Leonardi, S., Orlandi, P., Antonia, R.A.: Properties of d-and k-type roughness in a turbulent channel flow. Phys. Fluids 19(12), 125,101 (2007)CrossRefMATH
31.
go back to reference Visbal, M.R., Gaitonde, D.V.: On the use of higher-order finite-difference schemes on curvilinear and deforming meshes. J. Comput. Phys. 181(1), 155–185 (2002)MathSciNetCrossRefMATH Visbal, M.R., Gaitonde, D.V.: On the use of higher-order finite-difference schemes on curvilinear and deforming meshes. J. Comput. Phys. 181(1), 155–185 (2002)MathSciNetCrossRefMATH
32.
go back to reference Gaitonde, D.V., Visbal, M.R.: High-Order Schemes for Navier-Stokes Equations: Algorithm and Implementation into Fdl3di. Tech. rep., DTIC Document (1998)CrossRef Gaitonde, D.V., Visbal, M.R.: High-Order Schemes for Navier-Stokes Equations: Algorithm and Implementation into Fdl3di. Tech. rep., DTIC Document (1998)CrossRef
33.
go back to reference Rao, V.N., Tucker, P.G.: Intake lip separation control using plasma actuators. In: 16th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery (2016) Rao, V.N., Tucker, P.G.: Intake lip separation control using plasma actuators. In: 16th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery (2016)
34.
go back to reference Choudhari, M., Fischer, P.: Roughness induced transient growth. In: 35th AIAA Fluid Dynamics Conference and Exhibit, p. 4756 (2005) Choudhari, M., Fischer, P.: Roughness induced transient growth. In: 35th AIAA Fluid Dynamics Conference and Exhibit, p. 4756 (2005)
35.
go back to reference Ergin, F.G., White, E.B.: Unsteady and transitional flows behind roughness elements. AIAA J. 44(11), 2504–2514 (2006)CrossRef Ergin, F.G., White, E.B.: Unsteady and transitional flows behind roughness elements. AIAA J. 44(11), 2504–2514 (2006)CrossRef
36.
go back to reference Reda, D.C.: Review and synthesis of roughness-dominated transition correlations for reentry applications. J. Spacecr. Rocket. 39(2), 161–167 (2002)CrossRef Reda, D.C.: Review and synthesis of roughness-dominated transition correlations for reentry applications. J. Spacecr. Rocket. 39(2), 161–167 (2002)CrossRef
37.
go back to reference Brandt, L., Schlatter, P., Henningson, D.S.: Transition in boundary layers subject to free-stream turbulence. J. Fluid Mech. 517, 167–198 (2004)MathSciNetCrossRefMATH Brandt, L., Schlatter, P., Henningson, D.S.: Transition in boundary layers subject to free-stream turbulence. J. Fluid Mech. 517, 167–198 (2004)MathSciNetCrossRefMATH
38.
go back to reference Hack, M., Zaki, T.: Streak instabilities in boundary layers beneath free-stream turbulence. J. Fluid Mech. 741, 280–315 (2014)MathSciNetCrossRef Hack, M., Zaki, T.: Streak instabilities in boundary layers beneath free-stream turbulence. J. Fluid Mech. 741, 280–315 (2014)MathSciNetCrossRef
39.
go back to reference Loiseau, J.C., Robinet, J.C., Cherubini, S., Leriche, E.: Investigation of the roughness-induced transition: global stability analyses and direct numerical simulations. J. Fluid Mech. 760, 175–211 (2014)MathSciNetCrossRef Loiseau, J.C., Robinet, J.C., Cherubini, S., Leriche, E.: Investigation of the roughness-induced transition: global stability analyses and direct numerical simulations. J. Fluid Mech. 760, 175–211 (2014)MathSciNetCrossRef
40.
go back to reference Citro, V., Giannetti, F., Luchini, P., Auteri, F.: Global stability and sensitivity analysis of boundary-layer flows past a hemispherical roughness element. Phys. Fluids 27(8), 084,110 (2015)CrossRef Citro, V., Giannetti, F., Luchini, P., Auteri, F.: Global stability and sensitivity analysis of boundary-layer flows past a hemispherical roughness element. Phys. Fluids 27(8), 084,110 (2015)CrossRef
41.
go back to reference Vaughan, N.J., Zaki, T.A.: Stability of zero-pressure-gradient boundary layer distorted by unsteady klebanoff streaks. J. Fluid Mech. 681, 116–153 (2011)CrossRefMATH Vaughan, N.J., Zaki, T.A.: Stability of zero-pressure-gradient boundary layer distorted by unsteady klebanoff streaks. J. Fluid Mech. 681, 116–153 (2011)CrossRefMATH
42.
go back to reference Bose, R., Durbin, P.A.: Helical modes in boundary layer transition. Physical Review Fluids 1(7), 073,602 (2016)CrossRef Bose, R., Durbin, P.A.: Helical modes in boundary layer transition. Physical Review Fluids 1(7), 073,602 (2016)CrossRef
43.
go back to reference Denissen, N.A., White, E.B.: Secondary instability of roughness-induced transient growth. Phys. Fluids 25(11), 114,108 (2013)CrossRef Denissen, N.A., White, E.B.: Secondary instability of roughness-induced transient growth. Phys. Fluids 25(11), 114,108 (2013)CrossRef
44.
go back to reference Andersson, P., Brandt, L., Bottaro, A., Henningson, D.S.: On the breakdown of boundary layer streaks. J. Fluid Mech. 428, 29–60 (2001)MathSciNetCrossRefMATH Andersson, P., Brandt, L., Bottaro, A., Henningson, D.S.: On the breakdown of boundary layer streaks. J. Fluid Mech. 428, 29–60 (2001)MathSciNetCrossRefMATH
45.
go back to reference Schultz, M., Flack, K.: The rough-wall turbulent boundary layer from the hydraulically smooth to the fully rough regime. J. Fluid Mech. 580, 381–405 (2007)CrossRefMATH Schultz, M., Flack, K.: The rough-wall turbulent boundary layer from the hydraulically smooth to the fully rough regime. J. Fluid Mech. 580, 381–405 (2007)CrossRefMATH
46.
go back to reference Hong, J., Katz, J., Schultz, M.P.: Near-wall turbulence statistics and flow structures over three-dimensional roughness in a turbulent channel flow. J. Fluid Mech. 667, 1–37 (2011)CrossRefMATH Hong, J., Katz, J., Schultz, M.P.: Near-wall turbulence statistics and flow structures over three-dimensional roughness in a turbulent channel flow. J. Fluid Mech. 667, 1–37 (2011)CrossRefMATH
47.
go back to reference Schlatter, P., Örlü, R.: Assessment of direct numerical simulation data of turbulent boundary layers. J. Fluid Mech. 659, 116 (2010)CrossRefMATH Schlatter, P., Örlü, R.: Assessment of direct numerical simulation data of turbulent boundary layers. J. Fluid Mech. 659, 116 (2010)CrossRefMATH
48.
go back to reference Peet, Y., Sagaut, P., Charron, Y.: Pressure loss reduction in hydrogen pipelines by surface restructuring. Int. J. Hydrog. Energy 34(21), 8964–8973 (2009)CrossRef Peet, Y., Sagaut, P., Charron, Y.: Pressure loss reduction in hydrogen pipelines by surface restructuring. Int. J. Hydrog. Energy 34(21), 8964–8973 (2009)CrossRef
49.
go back to reference Cardillo, J., Chen, Y., Araya, G., Newman, J., Jansen, K., Castillo, L.: Dns of a turbulent boundary layer with surface roughness. J. Fluid Mech. 729, 603–637 (2013)MathSciNetCrossRefMATH Cardillo, J., Chen, Y., Araya, G., Newman, J., Jansen, K., Castillo, L.: Dns of a turbulent boundary layer with surface roughness. J. Fluid Mech. 729, 603–637 (2013)MathSciNetCrossRefMATH
50.
go back to reference Smalley, R., Leonardi, S., Antonia, R., Djenidi, L., Orlandi, P.: Reynolds stress anisotropy of turbulent rough wall layers. Exp. Fluids 33(1), 31–37 (2002)CrossRef Smalley, R., Leonardi, S., Antonia, R., Djenidi, L., Orlandi, P.: Reynolds stress anisotropy of turbulent rough wall layers. Exp. Fluids 33(1), 31–37 (2002)CrossRef
51.
go back to reference Jackson, P.: On the displacement height in the logarithmic velocity profile. J. Fluid Mech. 111, 15–25 (1981)CrossRefMATH Jackson, P.: On the displacement height in the logarithmic velocity profile. J. Fluid Mech. 111, 15–25 (1981)CrossRefMATH
Metadata
Title
Distributed Roughness Effects on Transitional and Turbulent Boundary Layers
Authors
Nagabhushana Rao Vadlamani
Paul G. Tucker
Paul Durbin
Publication date
16-10-2017
Publisher
Springer Netherlands
Published in
Flow, Turbulence and Combustion / Issue 3/2018
Print ISSN: 1386-6184
Electronic ISSN: 1573-1987
DOI
https://doi.org/10.1007/s10494-017-9864-4

Other articles of this Issue 3/2018

Flow, Turbulence and Combustion 3/2018 Go to the issue

Premium Partners