Skip to main content
Top
Published in: Wireless Networks 4/2018

03-11-2016

Distributed throughput optimization for heterogeneous IEEE 802.11 DCF networks

Authors: Xinghua Sun, Yayu Gao

Published in: Wireless Networks | Issue 4/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

For IEEE 802.11 DCF networks in ad-hoc mode, how to achieve the maximum throughput in a distributed manner draws much attention in previous studies. The problem becomes challenging for partially-saturated heterogeneous networks with multiple groups, as the optimal access parameters not only depend on the group size of saturated groups but also the aggregate input rate of all the unsaturated groups, both of which are hard to obtain without a central controller. In this paper, a novel distributive scheme is proposed for partially-saturated heterogeneous IEEE 802.11 DCF networks to achieve the maximum network throughput. With the proposed scheme, each saturated transmitter can obtain the optimal initial backoff window size distributively by two estimation rounds. In each estimation round, each saturated transmitter only needs to count the number of busy intervals and ACK frames on the channel. For fully-saturated networks, only one estimation round is needed. It is shown by extensive simulations that the proposed scheme can achieve the maximum network throughput in a distributive manner.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
Furthermore, it was shown in [16] that the node-throughput ratio is also determined by the initial backoff window size. Therefore, the ratio of the initial backoff window sizes remains unchanged so as to meet certain throughput differentiation requirement.
 
2
With carrier sensing, each transmitter can determine whether one transmission on the channel is successful or not by detecting the ACK frame, as shown in Fig. 1.
 
3
Note that if the scale factor \(C<1\), each saturated transmitter would have a smaller initial backoff window size, and access the channel more frequently. In this case, the channel contention becomes more fierce. Consequently, the unsaturated transmitter may become saturated. To prevent this from happening, the scaling factor is set to be larger than 1.
 
Literature
1.
go back to reference Gupta, A., Min, J., & Rhee, I. (2012). WiFox: Scaling WiFi Performance for Large Audience Environments. Proceedings of CoNEXT (pp. 217–228) Gupta, A., Min, J., & Rhee, I. (2012). WiFox: Scaling WiFi Performance for Large Audience Environments. Proceedings of CoNEXT (pp. 217–228)
2.
go back to reference Bianchi, G. (2000). Performance analysis of the IEEE 802.11 distributed coordination function. IEEE J Sel Areas Commun, 18(3), 535–547.MathSciNetCrossRef Bianchi, G. (2000). Performance analysis of the IEEE 802.11 distributed coordination function. IEEE J Sel Areas Commun, 18(3), 535–547.MathSciNetCrossRef
3.
go back to reference Bianchi, G., & Tinnirello, I. (2003). Kalman filter estimation of the number of competing terminals in an IEEE 802.11 network. Proceedings of IEEE INFOCOM (vol. 2, pp. 844–852), doi:10.1109/INFCOM.2003.1208922 Bianchi, G., & Tinnirello, I. (2003). Kalman filter estimation of the number of competing terminals in an IEEE 802.11 network. Proceedings of IEEE INFOCOM (vol. 2, pp. 844–852), doi:10.​1109/​INFCOM.​2003.​1208922
4.
go back to reference Toledo, A., Vercauteren, T., & Wang, X. (2006). Adaptive optimization of IEEE 802.11 DCF based on Bayesian estimation of the number of competing terminals. IEEE Trans Mob Comput, 5(9), 1283–1296. doi:10.1109/TMC.2006.124.CrossRef Toledo, A., Vercauteren, T., & Wang, X. (2006). Adaptive optimization of IEEE 802.11 DCF based on Bayesian estimation of the number of competing terminals. IEEE Trans Mob Comput, 5(9), 1283–1296. doi:10.​1109/​TMC.​2006.​124.CrossRef
5.
go back to reference Cali, F., Conti, M., & Gregori, E. (2000). Dynamic tuning of the IEEE 802.11 protocol to achieve a theoretical throughput limit. IEEE/ACM Trans Netw, 8(6), 785–799.CrossRef Cali, F., Conti, M., & Gregori, E. (2000). Dynamic tuning of the IEEE 802.11 protocol to achieve a theoretical throughput limit. IEEE/ACM Trans Netw, 8(6), 785–799.CrossRef
6.
go back to reference Dai, L., & Sun, X. (2013). A unified analysis of IEEE 802.11 DCF networks: Stability, throughput, and delay. IEEE Trans Mob Comput, 12(8), 1558–1572.CrossRef Dai, L., & Sun, X. (2013). A unified analysis of IEEE 802.11 DCF networks: Stability, throughput, and delay. IEEE Trans Mob Comput, 12(8), 1558–1572.CrossRef
7.
go back to reference Li, B., Battiti, R., & Fang, Y. (2007). Achieving optimal performance by using the IEEE 802.11 MAC protocol with service differentiation enhancements. IEEE Trans Veh Technol, 56(3), 1374–1387. doi:10.1109/TVT.2007.895565.CrossRef Li, B., Battiti, R., & Fang, Y. (2007). Achieving optimal performance by using the IEEE 802.11 MAC protocol with service differentiation enhancements. IEEE Trans Veh Technol, 56(3), 1374–1387. doi:10.​1109/​TVT.​2007.​895565.CrossRef
9.
go back to reference Gao, Y., Sun, X., & Dai, L. (2014). IEEE 802.11e EDCA networks: Modeling, differentiation and optimization. IEEE Trans Wirel Commun, 13(7), 3863–3879.CrossRef Gao, Y., Sun, X., & Dai, L. (2014). IEEE 802.11e EDCA networks: Modeling, differentiation and optimization. IEEE Trans Wirel Commun, 13(7), 3863–3879.CrossRef
10.
go back to reference Heusse, M., Rousseau, F., Guillier, R., & Duda, A. (2005). Idle sense: An optimal access method for high throughput and fairness in rate diverse wireless LANs. SIGCOMM Comput Commun Rev, 35(4), 121–132.CrossRef Heusse, M., Rousseau, F., Guillier, R., & Duda, A. (2005). Idle sense: An optimal access method for high throughput and fairness in rate diverse wireless LANs. SIGCOMM Comput Commun Rev, 35(4), 121–132.CrossRef
11.
go back to reference Cali, F., Conti, M., & Gregori, E. (2000b). IEEE 802.11 protocol: Design and performance evaluation of an adaptive backoff mechanism. IEEE J Sel Areas Commun, 18(9), 1774–1786. doi:10.1109/49.872963.CrossRef Cali, F., Conti, M., & Gregori, E. (2000b). IEEE 802.11 protocol: Design and performance evaluation of an adaptive backoff mechanism. IEEE J Sel Areas Commun, 18(9), 1774–1786. doi:10.​1109/​49.​872963.CrossRef
12.
go back to reference Ge, Y., Hou, J. C., & Choi, S. (2007). An analytic study of tuning systems parameters in IEEE 802.11e enhanced distributed channel access. Comput Netw, 51(8), 1955–1980.CrossRefMATH Ge, Y., Hou, J. C., & Choi, S. (2007). An analytic study of tuning systems parameters in IEEE 802.11e enhanced distributed channel access. Comput Netw, 51(8), 1955–1980.CrossRefMATH
14.
go back to reference Mao, J., Mao, Y., Leng, S., & Bai, X. (2009). A simple adaptive optimization scheme for IEEE 802.11 with differentiated channel access. IEEE Commun Lett, 13(5), 297–299.CrossRef Mao, J., Mao, Y., Leng, S., & Bai, X. (2009). A simple adaptive optimization scheme for IEEE 802.11 with differentiated channel access. IEEE Commun Lett, 13(5), 297–299.CrossRef
15.
go back to reference Hu, C., & Hou, J.C. (2007). A Novel Approach to Contention Control in IEEE 802.11e-Operated WLANs. Proceedings of IEEE INFOCOM (pp. 1190–1198) Hu, C., & Hou, J.C. (2007). A Novel Approach to Contention Control in IEEE 802.11e-Operated WLANs. Proceedings of IEEE INFOCOM (pp. 1190–1198)
17.
go back to reference Ni, J., Tan, B., & Srikant, R. (2010). Q-CSMA: Queue-Length Based CSMA/CA Algorithms for Achieving Maximum Throughput and Low Delay in Wireless Networks. Proceedings of INFOCOM (pp. 1–5) Ni, J., Tan, B., & Srikant, R. (2010). Q-CSMA: Queue-Length Based CSMA/CA Algorithms for Achieving Maximum Throughput and Low Delay in Wireless Networks. Proceedings of INFOCOM (pp. 1–5)
18.
go back to reference Jiang, L., & Walrand, J. (2011). Approaching throughput-optimality in distributed CSMA scheduling algorithms with collisions. IEEE/ACM Trans Netw, 19(3), 816–829.CrossRef Jiang, L., & Walrand, J. (2011). Approaching throughput-optimality in distributed CSMA scheduling algorithms with collisions. IEEE/ACM Trans Netw, 19(3), 816–829.CrossRef
19.
go back to reference Wu, D., Bao, L., Regan, A. C., & Talcott, C. L. (2013). Large-scale access scheduling in wireless mesh networks using social centrality. J Parallel Distrib Comput, 73(8), 1049–1065.CrossRefMATH Wu, D., Bao, L., Regan, A. C., & Talcott, C. L. (2013). Large-scale access scheduling in wireless mesh networks using social centrality. J Parallel Distrib Comput, 73(8), 1049–1065.CrossRefMATH
20.
go back to reference Wu, D., Bao, L., & Liu, C. H. (2013). Scalable channel allocation and access scheduling for wireless internet-of-things. IEEE Sens J, 13(10), 3596–3604.CrossRef Wu, D., Bao, L., & Liu, C. H. (2013). Scalable channel allocation and access scheduling for wireless internet-of-things. IEEE Sens J, 13(10), 3596–3604.CrossRef
21.
22.
go back to reference IEEE 802.11n-2009. (2009). Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications Amendment 5: Enhancements for Higher Throughput. IEEE 802.11n-2009. (2009). Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications Amendment 5: Enhancements for Higher Throughput.
Metadata
Title
Distributed throughput optimization for heterogeneous IEEE 802.11 DCF networks
Authors
Xinghua Sun
Yayu Gao
Publication date
03-11-2016
Publisher
Springer US
Published in
Wireless Networks / Issue 4/2018
Print ISSN: 1022-0038
Electronic ISSN: 1572-8196
DOI
https://doi.org/10.1007/s11276-016-1392-y

Other articles of this Issue 4/2018

Wireless Networks 4/2018 Go to the issue