Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

Published in: Physics of Metals and Metallography 2/2022

01-02-2022 | STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION

Distribution of Alloying Element Atoms between γ- and γ'-Phase Particles in a Heat-Resistant Nickel Alloy

Authors: L. B. Ber, S. V. Rogozhkin, A. A. Khomich, A. G. Zaluzhnyi

Published in: Physics of Metals and Metallography | Issue 2/2022

Login to get access
share
SHARE

Abstract

Results of the study of the chemical composition of contacting γ- and γ'-phase particles in a granular heat-resistant nickel alloy (HNA) VV751P (Ni–15Co–12Cr–0.7V–0.3C–0.9W–2.7Mo–3.4Ti–2.0Nb–8.3Al–0.02Hf–0.008B, at %) by atom probe tomography are analyzed. Experimental and literature data on the preferential location of alloying elements in γ- and γ'-phase particles in different heat-resistant nickel alloys are considered. A criterion for the characterization of each of elements based on the ratio K = Еv/r2 (where Еv is the number of valence electrons and r is the atomic radius of an element) is suggested. It is shown that the higher the K value, the more probable the enrichment of γ-phase particles in this element and the higher the degree of such an enriching. The lower the K value, the more probable the enrichment of γ'‑phase particles in this element and the higher the degree of such an enriching. The effect of γ- and γ'-forming elements in heat-resistant nickel alloys and other factors on the stability of the γ- and γ' phases, mechanical characteristics of disc heat-resistant nickel alloys at room temperature, and long-term strength at operating temperatures is discussed.
Literature
1.
go back to reference H. Fecht and D. Furrer, “Processing of nickel-base superalloys for turbine engine disc applications,” Adv. Eng. Mater. 2, 777–787 (2000). CrossRef H. Fecht and D. Furrer, “Processing of nickel-base superalloys for turbine engine disc applications,” Adv. Eng. Mater. 2, 777–787 (2000). CrossRef
2.
go back to reference E. N. Kablov, “Innovative developments of FSUE “VIAM” SSC RF for the implementation of “Strategic directions for the development of materials and technologies for their processing for the period up to 2030”,” Aviatsionnye Materialy i Tekhnologii, No. 1 (34), 3–33 (2015). E. N. Kablov, “Innovative developments of FSUE “VIAM” SSC RF for the implementation of “Strategic directions for the development of materials and technologies for their processing for the period up to 2030”,” Aviatsionnye Materialy i Tekhnologii, No. 1 (34), 3–33 (2015).
3.
go back to reference G. S. Garibov, “Future development of domestic powdered heat-resistant nickel-based disk alloys for new parts of aviation technology,” Tekhnologiya Legkikh Splavov, No. 1, 7–28 (2017). G. S. Garibov, “Future development of domestic powdered heat-resistant nickel-based disk alloys for new parts of aviation technology,” Tekhnologiya Legkikh Splavov, No. 1, 7–28 (2017).
4.
go back to reference S. V. Rogozhkin, L. B. Ber, A. A. Nikitin, A. A. Khomich, O. A. Raznitsyn, A. A. Lukyanchuk, A. S. Shutov, M. M. Karashaev, and A. G. Zaluzhny, “Atom probe tomography of the VV751P nickel-based superalloy,” Phys. Met. Metallogr. 121, No. 1, 53–64 (2020). CrossRef S. V. Rogozhkin, L. B. Ber, A. A. Nikitin, A. A. Khomich, O. A. Raznitsyn, A. A. Lukyanchuk, A. S. Shutov, M. M. Karashaev, and A. G. Zaluzhny, “Atom probe tomography of the VV751P nickel-based superalloy,” Phys. Met. Metallogr. 121, No. 1, 53–64 (2020). CrossRef
5.
go back to reference K. Matuszevski, R. Rettig, H. Matysiak, Z. Peng, I. Povstugar, P. Choi, J. Muller, D. Raabe, E. Spiecker, K. J. Kurzydlowski, and R. F. Singer, “Effect of ruthenium on precipitation of topologically close packed phases in Ni-based superalloys of 3rd and 4th generation,” Acta Mater. 95, 274–283 (2015). CrossRef K. Matuszevski, R. Rettig, H. Matysiak, Z. Peng, I. Povstugar, P. Choi, J. Muller, D. Raabe, E. Spiecker, K. J. Kurzydlowski, and R. F. Singer, “Effect of ruthenium on precipitation of topologically close packed phases in Ni-based superalloys of 3rd and 4th generation,” Acta Mater. 95, 274–283 (2015). CrossRef
6.
go back to reference E. Cadel, D. Lemarchand, S. Chamberland, and D. Blavette, “Atom Probe Tomography investigation of the microstructure of superalloys N18,” Acta Mater. 50, 957–962 (2002). CrossRef E. Cadel, D. Lemarchand, S. Chamberland, and D. Blavette, “Atom Probe Tomography investigation of the microstructure of superalloys N18,” Acta Mater. 50, 957–962 (2002). CrossRef
7.
go back to reference P. M. Sarosi, M. K. Miller, D. Isheim, and M. Mills, “Effects of cooling rate on the microstructure of a commercial Ni-based superalloy using atom probe tomography,” Microsc. Microanal. 13, Suppl. 2, 194–195 (2007). CrossRef P. M. Sarosi, M. K. Miller, D. Isheim, and M. Mills, “Effects of cooling rate on the microstructure of a commercial Ni-based superalloy using atom probe tomography,” Microsc. Microanal. 13, Suppl. 2, 194–195 (2007). CrossRef
8.
go back to reference D. Lemarchand, S. Chamberland, E. Cadel, and D. Blavette, “Investigation of grain-boundary structure-segregation relationship in an N18 nickel-based superalloy,” Philos. Mag. A 82, 1651–1669 (2002). CrossRef D. Lemarchand, S. Chamberland, E. Cadel, and D. Blavette, “Investigation of grain-boundary structure-segregation relationship in an N18 nickel-based superalloy,” Philos. Mag. A 82, 1651–1669 (2002). CrossRef
9.
go back to reference C. J. Smithells, Metals Reference Book (Butterworths, London, 1967). C. J. Smithells, Metals Reference Book (Butterworths, London, 1967).
10.
go back to reference D. V. Zaitsev, S. V. Sbitneva, L. B. Ber, and A. V. Zavodov, “ Determination of the chemical composition of particles of the main phases in articles made of EP741NP granulated heat-resistant nickel alloy,” Trudy VIAM, No. 9 (45), 61–71 (2016). D. V. Zaitsev, S. V. Sbitneva, L. B. Ber, and A. V. Zavodov, “ Determination of the chemical composition of particles of the main phases in articles made of EP741NP granulated heat-resistant nickel alloy,” Trudy VIAM, No. 9 (45), 61–71 (2016).
11.
go back to reference G. I. Morozova, “Regularity of the formation of the chemical composition of the γ'/γ matrix of multicomponent nickel alloys,” Dokl. Akad. Nauk SSSR, No. 6, 1413–1416 (1991). G. I. Morozova, “Regularity of the formation of the chemical composition of the γ'/γ matrix of multicomponent nickel alloys,” Dokl. Akad. Nauk SSSR, No. 6, 1413–1416 (1991).
12.
go back to reference G. I. Morozova, “Alloying imbalance compensation for high-temperature nickel alloys,” Metallovedenie i Termich. Obr. Metallov., No. 12, 52–56 (2012). G. I. Morozova, “Alloying imbalance compensation for high-temperature nickel alloys,” Metallovedenie i Termich. Obr. Metallov., No. 12, 52–56 (2012).
13.
go back to reference N. V. Petrushin and I. L. Svetlov, “Physicochemical and structural characteristics of nickel-based superalloys,” Metally, No. 2, 63–73 (2001). N. V. Petrushin and I. L. Svetlov, “Physicochemical and structural characteristics of nickel-based superalloys,” Metally, No. 2, 63–73 (2001).
14.
go back to reference Ya. S. Umanskii and Yu. A. Skakov, Physics of Metals. Atomic Composition of Metals and Alloys (Atomizdat, Moscow, 1978). Ya. S. Umanskii and Yu. A. Skakov, Physics of Metals. Atomic Composition of Metals and Alloys (Atomizdat, Moscow, 1978).
15.
go back to reference V. G. Vaks, Interatomic Interactions and Bonds in Solids (AT, Moscow, 2002) [in Russian]. V. G. Vaks, Interatomic Interactions and Bonds in Solids (AT, Moscow, 2002) [in Russian].
16.
go back to reference W. J. Boech and J. S. Slaney, “Preventing Sigma Phase Embrittelement in nickel base superalloys,” Metall. Prog. 86, 109–111 (1964). W. J. Boech and J. S. Slaney, “Preventing Sigma Phase Embrittelement in nickel base superalloys,” Metall. Prog. 86, 109–111 (1964).
17.
go back to reference Ch. S. Barrett, “Some industrial alloying practice and its basis,” J. Inst. Met. 100, 65–73 (1972). Ch. S. Barrett, “Some industrial alloying practice and its basis,” J. Inst. Met. 100, 65–73 (1972).
18.
go back to reference M. Morinaga, N. Yucava, H. Adachi, and H. Ezaki, “New PHACOMP and its application to alloy design,” Superalloys 1984 (Fifth International Symposium). AIME, 523–532 (1984). M. Morinaga, N. Yucava, H. Adachi, and H. Ezaki, “New PHACOMP and its application to alloy design,” Superalloys 1984 (Fifth International Symposium). AIME, 523–532 (1984).
19.
go back to reference P. A. J. Bagot, O. B. W. Silk, J. O. Douglas, S. Pedrazzini, D. J. Crudden, T. L. Martin, M. C. Hardy, M. P. Moody, and R. C. Reed, “An Atom Probe Tomography study of site preference and partitioning in a nickel-based superalloy,” Acta Mater. 125, 156–165 (2017). CrossRef P. A. J. Bagot, O. B. W. Silk, J. O. Douglas, S. Pedrazzini, D. J. Crudden, T. L. Martin, M. C. Hardy, M. P. Moody, and R. C. Reed, “An Atom Probe Tomography study of site preference and partitioning in a nickel-based superalloy,” Acta Mater. 125, 156–165 (2017). CrossRef
20.
go back to reference N. Saunders, “Phase diagram calculation for Ni-based superalloys,” in Superalloys 1996, Ed. by R. D. Kissinger (TMS, Warrendale, 1996). N. Saunders, “Phase diagram calculation for Ni-based superalloys,” in Superalloys 1996, Ed. by R. D. Kissinger (TMS, Warrendale, 1996).
21.
go back to reference A. V. Logunov, Heat Resistant Nickel Alloys for Gas Turbine Blades and Discs (OOO Izdatel’skii Dom “Gazoturbinnye Tekhnologii”, Rybinsk, 2017). A. V. Logunov, Heat Resistant Nickel Alloys for Gas Turbine Blades and Discs (OOO Izdatel’skii Dom “Gazoturbinnye Tekhnologii”, Rybinsk, 2017).
22.
go back to reference A. V. Logunov, Yu. N. Shmotin, D. V. Danilov, Sh. Kh. Mukhtarov, and A. M. Mikhailov, “Development and research of a new high-temperature nickel alloy for disks of gas turbine engines and installations,” Dvigatel’, No. 4, 10–12 (2017). A. V. Logunov, Yu. N. Shmotin, D. V. Danilov, Sh. Kh. Mukhtarov, and A. M. Mikhailov, “Development and research of a new high-temperature nickel alloy for disks of gas turbine engines and installations,” Dvigatel’, No. 4, 10–12 (2017).
23.
go back to reference R. I. Zainulin, A. A. Ganeev, R. V. Shakhov, S. K. Mukhtarov, V. M. Imayev, and R. M. Imayev, “Microstructure and mechanical properties of a nickel-base superalloy heavily alloyed with substitution elements,” IOP Conf. Ser.: Mater. Sci. Eng. 1008, 012008 (2020). R. I. Zainulin, A. A. Ganeev, R. V. Shakhov, S. K. Mukhtarov, V. M. Imayev, and R. M. Imayev, “Microstructure and mechanical properties of a nickel-base superalloy heavily alloyed with substitution elements,” IOP Conf. Ser.: Mater. Sci. Eng. 1008, 012008 (2020).
24.
go back to reference P. Auburtin, T. Wang, S. L. Cockcroft, and A. Mitchell, “Freckle formation in superalloys,” Metall. Mater. Trans. B 31, 801–811 (2000). CrossRef P. Auburtin, T. Wang, S. L. Cockcroft, and A. Mitchell, “Freckle formation in superalloys,” Metall. Mater. Trans. B 31, 801–811 (2000). CrossRef
25.
go back to reference Superalloys 2020. Proceedings of the 14th International Symposium on Superalloys, Ed. by S. Tin, M. Hardy et al. (TMS, Springer. 2020), p. 2008. Superalloys 2020. Proceedings of the 14th International Symposium on Superalloys, Ed. by S. Tin, M. Hardy et al. (TMS, Springer. 2020), p. 2008.
26.
go back to reference L. B. Ber, “Temperature-time diagrams of γ-solid solution decomposition in EP741NP and VV751P granulated heat-resistant nickel alloys, their construction and use in quenching disk blanks,” Tekhnologiya Legkikh Splavov, No. 4, 5–19 (2017). L. B. Ber, “Temperature-time diagrams of γ-solid solution decomposition in EP741NP and VV751P granulated heat-resistant nickel alloys, their construction and use in quenching disk blanks,” Tekhnologiya Legkikh Splavov, No. 4, 5–19 (2017).
27.
go back to reference L. B. Ber and A. M. Kazberovich, “Influence of alloying and some structural factors on the complex of material characteristics of disk blanks from granulated nickel EP741NP, VV750P, VV751P, VV752P, VV753P heat-resistant alloys,” Tekhnologiya Legkikh Splavov, No. 3, 16–33 (2019). L. B. Ber and A. M. Kazberovich, “Influence of alloying and some structural factors on the complex of material characteristics of disk blanks from granulated nickel EP741NP, VV750P, VV751P, VV752P, VV753P heat-resistant alloys,” Tekhnologiya Legkikh Splavov, No. 3, 16–33 (2019).
28.
go back to reference A. M. Kazberovich, L. B. Ber, D. A. Egorov, A. A. Zhivushkin, S. B. Polyanskii, and T. A. Mukhina, “Improving the complex of characteristics of disk blanks made of EP741NP alloy granules for promising gas turbine engines,” Tekhnologiya Legkikh Splavov, No. 4, 36–46 (2020). A. M. Kazberovich, L. B. Ber, D. A. Egorov, A. A. Zhivushkin, S. B. Polyanskii, and T. A. Mukhina, “Improving the complex of characteristics of disk blanks made of EP741NP alloy granules for promising gas turbine engines,” Tekhnologiya Legkikh Splavov, No. 4, 36–46 (2020).
Metadata
Title
Distribution of Alloying Element Atoms between γ- and γ'-Phase Particles in a Heat-Resistant Nickel Alloy
Authors
L. B. Ber
S. V. Rogozhkin
A. A. Khomich
A. G. Zaluzhnyi
Publication date
01-02-2022
Publisher
Pleiades Publishing
Published in
Physics of Metals and Metallography / Issue 2/2022
Print ISSN: 0031-918X
Electronic ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X22020028