Skip to main content
Top
Published in: Cognitive Neurodynamics 6/2022

24-03-2022 | Research Article

Disynaptic effect of hilar cells on pattern separation in a spiking neural network of hippocampal dentate gyrus

Authors: Sang-Yoon Kim, Woochang Lim

Published in: Cognitive Neurodynamics | Issue 6/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We study the disynaptic effect of the hilar cells on pattern separation in a spiking neural network of the hippocampal dentate gyrus (DG). The principal granule cells (GCs) in the DG perform pattern separation, transforming similar input patterns into less-similar output patterns. In our DG network, the hilus consists of excitatory mossy cells (MCs) and inhibitory HIPP (hilar perforant path-associated) cells. Here, we consider the disynaptic effects of the MCs and the HIPP cells on the GCs, mediated by the inhibitory basket cells (BCs) in the granular layer; MC \(\rightarrow\) BC \(\rightarrow\) GC and HIPP \(\rightarrow\) BC \(\rightarrow\) GC. The MCs provide disynaptic inhibitory input (mediated by the intermediate BCs) to the GCs, which decreases the firing activity of the GCs. On the other hand, the HIPP cells disinhibit the intermediate BCs, which leads to increasing the firing activity of the GCs. In this way, the disynaptic effects of the MCs and the HIPP cells are opposite. We investigate change in the pattern separation efficacy by varying the synaptic strength \(K^\mathrm{(BC, X)}\) [from the pre-synaptic X (= MC or HIPP) to the post-synaptic BC]. Thus, sparsity for the firing activity of the GCs is found to improve the efficacy of pattern separation, and hence the disynaptic effects of the MCs and the HIPP cells on the pattern separation become opposite ones. In the combined case when simultaneously changing both \(K^\mathrm{(BC, MC)}\) and \(K^\mathrm{(BC, HIPP)}\), as a result of balance between the two competing disynaptic effects of the MCs and the HIPP cells, the efficacy of pattern separation is found to become the highest at their original default values where the activation degree of the GCs is the lowest. We also note that, while the GCs perform pattern separation, sparsely synchronized rhythm is found to appear in the population of the GCs. Hence, we examine quantitative association between population and individual firing behaviors in the sparsely synchronized rhythm and pattern separation. They are found to be strongly correlated. Consequently, the better the population and individual firing behaviors in the sparsely synchronized rhythm are, the more pattern separation efficacy becomes enhanced.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
go back to reference Almeida LD, Idiart M, Lisman JE (2009) A second function of gamma frequency oscillations: An E%-max winner-take-all mechanism selects which cells fire. J Neurosci 29:7497–7503PubMedPubMedCentralCrossRef Almeida LD, Idiart M, Lisman JE (2009) A second function of gamma frequency oscillations: An E%-max winner-take-all mechanism selects which cells fire. J Neurosci 29:7497–7503PubMedPubMedCentralCrossRef
go back to reference Amaral DG, Witter MP (1989) The three-dimensional organization of the hippocampal formation: A review of anatomical data. Neuroscience 31:571–591PubMedCrossRef Amaral DG, Witter MP (1989) The three-dimensional organization of the hippocampal formation: A review of anatomical data. Neuroscience 31:571–591PubMedCrossRef
go back to reference Amaral DG, Ishizuka N, Claiborne B (1990) Neurons, numbers and the hippocampal network. Prog Brain Res 83:1–11PubMedCrossRef Amaral DG, Ishizuka N, Claiborne B (1990) Neurons, numbers and the hippocampal network. Prog Brain Res 83:1–11PubMedCrossRef
go back to reference Amaral DG, Scharfman HE, Lavenex P (2007) The dentate gyrus: fundamental neuroanatomical organization (dentate gyrus for dummies). Prog Brain Res 163:3–22PubMedPubMedCentralCrossRef Amaral DG, Scharfman HE, Lavenex P (2007) The dentate gyrus: fundamental neuroanatomical organization (dentate gyrus for dummies). Prog Brain Res 163:3–22PubMedPubMedCentralCrossRef
go back to reference Andersen P, Bliss TVP, Skrede KK (1971) Lamellar organization of hippocampal excitatory pathways. Exp Brain Res 13:222–238PubMedCrossRef Andersen P, Bliss TVP, Skrede KK (1971) Lamellar organization of hippocampal excitatory pathways. Exp Brain Res 13:222–238PubMedCrossRef
go back to reference Andersen P, Soleng AF, Raastad M (2000) The hippocampal lamella hypothesis revisited. Brain Res 886:165–171PubMedCrossRef Andersen P, Soleng AF, Raastad M (2000) The hippocampal lamella hypothesis revisited. Brain Res 886:165–171PubMedCrossRef
go back to reference Barranca VJ, Huang H, Kawakita G (2019) Network structure and input integration in competing firing rate models for decision-making. J Comput Neurosci 46:145–168PubMedCrossRef Barranca VJ, Huang H, Kawakita G (2019) Network structure and input integration in competing firing rate models for decision-making. J Comput Neurosci 46:145–168PubMedCrossRef
go back to reference Bartos M, Vida I, Frotscher M, Geiger JR, Jonas P (2001) Rapid signaling at inhibitory synapses in a dentate gyrus interneuron network. J Neurosci 21:2687–2698PubMedPubMedCentralCrossRef Bartos M, Vida I, Frotscher M, Geiger JR, Jonas P (2001) Rapid signaling at inhibitory synapses in a dentate gyrus interneuron network. J Neurosci 21:2687–2698PubMedPubMedCentralCrossRef
go back to reference Bielczyk NZ, Piskała K, Płomecka M, Radziński P, Todorova L, Foryś U (2019) Time-delay model of perceptual decision making in cortical networks. PLoS One 14:e0211885PubMedPubMedCentralCrossRef Bielczyk NZ, Piskała K, Płomecka M, Radziński P, Todorova L, Foryś U (2019) Time-delay model of perceptual decision making in cortical networks. PLoS One 14:e0211885PubMedPubMedCentralCrossRef
go back to reference Brunel N, Wang XJ (2003) What determines the frequency of fast network oscillations with irregular neural discharges? I. Synaptic dynamics and excitation-inhibition balance. J Neurophysiol 90:415–430PubMedCrossRef Brunel N, Wang XJ (2003) What determines the frequency of fast network oscillations with irregular neural discharges? I. Synaptic dynamics and excitation-inhibition balance. J Neurophysiol 90:415–430PubMedCrossRef
go back to reference Buckmaster PS, Jongen-Rêlo AL (1999) Highly specific neuron loss preserves lateral inhibitory circuits in the dentate gyrus of kainite-induced epileptic rats. J Neurosci 19:9519–9529PubMedPubMedCentralCrossRef Buckmaster PS, Jongen-Rêlo AL (1999) Highly specific neuron loss preserves lateral inhibitory circuits in the dentate gyrus of kainite-induced epileptic rats. J Neurosci 19:9519–9529PubMedPubMedCentralCrossRef
go back to reference Buckmaster PS, Wenzel HJ, Kunkel DD, Schwartzkroin PA (1996) Axon arbors and synaptic connections of hippocampal mossy cells in the rat in vivo. J Comp Neurol 366:271–292PubMedCrossRef Buckmaster PS, Wenzel HJ, Kunkel DD, Schwartzkroin PA (1996) Axon arbors and synaptic connections of hippocampal mossy cells in the rat in vivo. J Comp Neurol 366:271–292PubMedCrossRef
go back to reference Buckmaster PS, Yamawaki R, Zhang GF (2002) Axon arbors and synaptic connections of a vulnerable population of interneurons in the dentate gyrus in vivo. J Comp Neurol 445:360–373PubMedCrossRef Buckmaster PS, Yamawaki R, Zhang GF (2002) Axon arbors and synaptic connections of a vulnerable population of interneurons in the dentate gyrus in vivo. J Comp Neurol 445:360–373PubMedCrossRef
go back to reference Chavlis S, Petrantonakis PC, Poirazi P (2017) Dendrites of dentate gyrus granule cells contribute to pattern separation by controlling sparsity. Hippocampus 27:89–110PubMedCrossRef Chavlis S, Petrantonakis PC, Poirazi P (2017) Dendrites of dentate gyrus granule cells contribute to pattern separation by controlling sparsity. Hippocampus 27:89–110PubMedCrossRef
go back to reference Chiang PH, Wu PY, Kuo TW, Liu YC, Chan CF, Chien TC, Cheng JK, Huang YY, Chiu CD, Lien CC (2012) GABA is depolarizing in hippocampal dentate granule cells of the adolescent and adult rats. J Neurosci 32:62–67PubMedPubMedCentralCrossRef Chiang PH, Wu PY, Kuo TW, Liu YC, Chan CF, Chien TC, Cheng JK, Huang YY, Chiu CD, Lien CC (2012) GABA is depolarizing in hippocampal dentate granule cells of the adolescent and adult rats. J Neurosci 32:62–67PubMedPubMedCentralCrossRef
go back to reference Coultrip R, Granger R, Lynch G (1992) A cortical model of winner-take-all competition via lateral inhibition. Neural Netw 5:47–54CrossRef Coultrip R, Granger R, Lynch G (1992) A cortical model of winner-take-all competition via lateral inhibition. Neural Netw 5:47–54CrossRef
go back to reference Danielson NB, Turi GF, Ladow M, Chavlis S, Petrantonakis PC, Poirazi P, Losonczy A (2017) In vivo imaging of dentate gyrus mossy cells in behaving mice. Neuron 93:552–559PubMedPubMedCentralCrossRef Danielson NB, Turi GF, Ladow M, Chavlis S, Petrantonakis PC, Poirazi P, Losonczy A (2017) In vivo imaging of dentate gyrus mossy cells in behaving mice. Neuron 93:552–559PubMedPubMedCentralCrossRef
go back to reference Dudek SM, Alexander GM, Farris S (2016) Rediscovering area CA2: unique properties and functions. Nat Rev Nurosci 17:89–102CrossRef Dudek SM, Alexander GM, Farris S (2016) Rediscovering area CA2: unique properties and functions. Nat Rev Nurosci 17:89–102CrossRef
go back to reference Espinoza C, Guzman SJ, Zhang X, Jonas P (2018) Parvalbumin+ interneurons obey unique connectivity rules and establish a powerful lateral inhibition microcircuit in dentate gyrus. Nat Commun 9:4605PubMedPubMedCentralCrossRef Espinoza C, Guzman SJ, Zhang X, Jonas P (2018) Parvalbumin+ interneurons obey unique connectivity rules and establish a powerful lateral inhibition microcircuit in dentate gyrus. Nat Commun 9:4605PubMedPubMedCentralCrossRef
go back to reference Geiger JRP, Lübke J, Roth A, Frotscher M, Jonas P (1997) Submillisecond AMPA receptor-mediated signaling at a principal neuron-interneuron synapse. Neuron 18:1009–1023PubMedCrossRef Geiger JRP, Lübke J, Roth A, Frotscher M, Jonas P (1997) Submillisecond AMPA receptor-mediated signaling at a principal neuron-interneuron synapse. Neuron 18:1009–1023PubMedCrossRef
go back to reference Geisler C, Brunel N, Wang XJ (2005) Contributions of intrinsic membrane dynamics to fast network oscillations with irregular neuronal discharges. J Neurophysiol 94:4344–4361PubMedCrossRef Geisler C, Brunel N, Wang XJ (2005) Contributions of intrinsic membrane dynamics to fast network oscillations with irregular neuronal discharges. J Neurophysiol 94:4344–4361PubMedCrossRef
go back to reference Gerstner W, Kistler W (2002) Spiking Neuron Models. Cambridge University Press, New YorkCrossRef Gerstner W, Kistler W (2002) Spiking Neuron Models. Cambridge University Press, New YorkCrossRef
go back to reference Gluck MA, Myers CE (2001) Gateway to Memory: An Introduction to Neural Network Modeling of the Hippocampus in Learning and Memory. MIT Press, Cambridge Gluck MA, Myers CE (2001) Gateway to Memory: An Introduction to Neural Network Modeling of the Hippocampus in Learning and Memory. MIT Press, Cambridge
go back to reference Hafting T, Fyhn M, Molden S, Moser MB, Moser EI (2005) Microstructure of a spatial map in the entorhinal cortex. Nature 436:801–806PubMedCrossRef Hafting T, Fyhn M, Molden S, Moser MB, Moser EI (2005) Microstructure of a spatial map in the entorhinal cortex. Nature 436:801–806PubMedCrossRef
go back to reference Hosp JA, Strüber M, Yanagawa Y, Obata K, Vida I, Jonas P, Bartos M (2014) Morpho-physiological criteria divide dentate gyrus interneurons into classes. Hippocampus 24:189–203PubMedCrossRef Hosp JA, Strüber M, Yanagawa Y, Obata K, Vida I, Jonas P, Bartos M (2014) Morpho-physiological criteria divide dentate gyrus interneurons into classes. Hippocampus 24:189–203PubMedCrossRef
go back to reference Houghton C (2017) Dentate gyrus and hilar region revisited. Behav Brain Sci 39:28–29 Houghton C (2017) Dentate gyrus and hilar region revisited. Behav Brain Sci 39:28–29
go back to reference Hsu TT, Lee CT, Tai MH, Lien CC (2016) Differential recruitment of dentate gyrus interneuron types by commissural versus performant pathways. Cerebral Cortex 26:2715–2727PubMedCrossRef Hsu TT, Lee CT, Tai MH, Lien CC (2016) Differential recruitment of dentate gyrus interneuron types by commissural versus performant pathways. Cerebral Cortex 26:2715–2727PubMedCrossRef
go back to reference Jahr CE, Stevens CF (1990) Voltage dependence of NMDA-activated macroscopic conductances predicted by single-channel kinetics. J Neurosci 10:3178–3182PubMedPubMedCentralCrossRef Jahr CE, Stevens CF (1990) Voltage dependence of NMDA-activated macroscopic conductances predicted by single-channel kinetics. J Neurosci 10:3178–3182PubMedPubMedCentralCrossRef
go back to reference Jinde S, Zsiros V, Jiang Z, Nakao K, Pickel J, Kohno K, Belforte JE, Nakazawa K (2012) Hilar mossy cell degeneration causes transient dentate granule cell hyperexcitability and impaired pattern separation. Neuron 76:1189–1200PubMedPubMedCentralCrossRef Jinde S, Zsiros V, Jiang Z, Nakao K, Pickel J, Kohno K, Belforte JE, Nakazawa K (2012) Hilar mossy cell degeneration causes transient dentate granule cell hyperexcitability and impaired pattern separation. Neuron 76:1189–1200PubMedPubMedCentralCrossRef
go back to reference Jinde S, Zsiros V, Nakazawa K (2013) Hilar mossy cell circuitry controlling dentate granule cell excitability. Front Neural Circuit 7:14 Jinde S, Zsiros V, Nakazawa K (2013) Hilar mossy cell circuitry controlling dentate granule cell excitability. Front Neural Circuit 7:14
go back to reference Kassab R, Alexandre F (2018) Pattern separation in the hippocampus: distinct circuits under different conditions. Brain Struct Funct 223:2785–2808PubMedCrossRef Kassab R, Alexandre F (2018) Pattern separation in the hippocampus: distinct circuits under different conditions. Brain Struct Funct 223:2785–2808PubMedCrossRef
go back to reference Kim SY, Lim W (2014) Realistic thermodynamic and statistical-mechanical measures for neural synchronization. J Neurosci Meth 226:161–170CrossRef Kim SY, Lim W (2014) Realistic thermodynamic and statistical-mechanical measures for neural synchronization. J Neurosci Meth 226:161–170CrossRef
go back to reference Kim SY, Lim W (2018) Effect of inhibitory spike-timing-dependent plasticity on fast sparsely synchronized rhythms in a small-world neuronal network. Neural Netw 106:50–66PubMedCrossRef Kim SY, Lim W (2018) Effect of inhibitory spike-timing-dependent plasticity on fast sparsely synchronized rhythms in a small-world neuronal network. Neural Netw 106:50–66PubMedCrossRef
go back to reference Kim SY, Lim W (2021) Effect of diverse recoding of granule cells on optokinetic response in a cerebellar ring network with synaptic plasticity. Neural Netw 134:173–204PubMedCrossRef Kim SY, Lim W (2021) Effect of diverse recoding of granule cells on optokinetic response in a cerebellar ring network with synaptic plasticity. Neural Netw 134:173–204PubMedCrossRef
go back to reference Kim SY, Lim W (2021) Influence of various temporal recoding on Pavlovian eyeblink conditioning in the cerebellum. Cogn Neurodyn 15:1067–1099PubMedCrossRef Kim SY, Lim W (2021) Influence of various temporal recoding on Pavlovian eyeblink conditioning in the cerebellum. Cogn Neurodyn 15:1067–1099PubMedCrossRef
go back to reference Kim SY, Lim W (2021) Equalization effect in interpopulation spike-timing-dependent plasticity in two inhibitory and excitatory populations. In: Lintas A, Enrico P, Pan X, Wang R, Villa A (eds) Advances in Cognitive Neurodynamics (VII). Springer, Singapore, pp 75–82CrossRef Kim SY, Lim W (2021) Equalization effect in interpopulation spike-timing-dependent plasticity in two inhibitory and excitatory populations. In: Lintas A, Enrico P, Pan X, Wang R, Villa A (eds) Advances in Cognitive Neurodynamics (VII). Springer, Singapore, pp 75–82CrossRef
go back to reference Kim SY, Lim W (2022) Dynamical origin for winner-take-all competition in a biological network of the hippocampal dentate gyrus. Phys Rev E (Accepted for Publication) Kim SY, Lim W (2022) Dynamical origin for winner-take-all competition in a biological network of the hippocampal dentate gyrus. Phys Rev E (Accepted for Publication)
go back to reference Kneisler TB, Dingledine R (1995) Spontaneous and synaptic input from granule cells and the perforant path to dentate basket cells in the rat hippocampus. Hippocampus 5:151–164PubMedCrossRef Kneisler TB, Dingledine R (1995) Spontaneous and synaptic input from granule cells and the perforant path to dentate basket cells in the rat hippocampus. Hippocampus 5:151–164PubMedCrossRef
go back to reference Knierim JJ, Neunuebel JP (2016) Tracking the flow of hippocampal computation: Pattern separation, pattern completion, and attractor dynamics. Neurobiol Learn Mem 129:38–49PubMedCrossRef Knierim JJ, Neunuebel JP (2016) Tracking the flow of hippocampal computation: Pattern separation, pattern completion, and attractor dynamics. Neurobiol Learn Mem 129:38–49PubMedCrossRef
go back to reference Krueppel R, Remy S, Beck H (2011) Dendritic integration in hippocampal dentate granule cells. Neuron 71:512–528PubMedCrossRef Krueppel R, Remy S, Beck H (2011) Dendritic integration in hippocampal dentate granule cells. Neuron 71:512–528PubMedCrossRef
go back to reference Leutgeb JK, Leutgeb S, Moser MB, Moser EI (2007) Pattern separation in the dentate gyrus and CA3 of the hippocampus. Science 315:961–966PubMedCrossRef Leutgeb JK, Leutgeb S, Moser MB, Moser EI (2007) Pattern separation in the dentate gyrus and CA3 of the hippocampus. Science 315:961–966PubMedCrossRef
go back to reference Liu YC, Cheng JK, Lien CC (2014) Rapid dynamic changes of dendritic inhibition in the dentate gyrus by presynaptic activity patterns. J Neurosci 34:1344–1357PubMedPubMedCentralCrossRef Liu YC, Cheng JK, Lien CC (2014) Rapid dynamic changes of dendritic inhibition in the dentate gyrus by presynaptic activity patterns. J Neurosci 34:1344–1357PubMedPubMedCentralCrossRef
go back to reference Lübke J, Frotscher M, Spruston N (1998) Specialized electrophysiological properties of anatomically identified neurons in the hilar region of the rat fascia dentata. J Neurophysiol 79:1518–1534PubMedCrossRef Lübke J, Frotscher M, Spruston N (1998) Specialized electrophysiological properties of anatomically identified neurons in the hilar region of the rat fascia dentata. J Neurophysiol 79:1518–1534PubMedCrossRef
go back to reference Marr D (1971) Simple memory: A theory for archicortex. Phil Trans R Soc Lond B 262:23–81CrossRef Marr D (1971) Simple memory: A theory for archicortex. Phil Trans R Soc Lond B 262:23–81CrossRef
go back to reference McNaughton B, Morris R (1987) Hippocampal synaptic enhancement and information storage within a distributed memory system. Trends Neurosci 10:408–415CrossRef McNaughton B, Morris R (1987) Hippocampal synaptic enhancement and information storage within a distributed memory system. Trends Neurosci 10:408–415CrossRef
go back to reference McNaughton BL, Barnes CA, Mizumori SJY, Green EJ, Sharp PE (1991) Contribution of granule cells to spatial representations in hippocampal circuits: A puzzle. In: Morrell F (ed) Kindling and Synaptic Plasticity: The Legacy of Graham Goddar. Springer-Verlag, Boston, pp 110–123 McNaughton BL, Barnes CA, Mizumori SJY, Green EJ, Sharp PE (1991) Contribution of granule cells to spatial representations in hippocampal circuits: A puzzle. In: Morrell F (ed) Kindling and Synaptic Plasticity: The Legacy of Graham Goddar. Springer-Verlag, Boston, pp 110–123
go back to reference Morgan RJ, Santhakumar V, Soletsz I (2007) Modeling the dentate gyrus. Prog Brain Res 163:639–658PubMedCrossRef Morgan RJ, Santhakumar V, Soletsz I (2007) Modeling the dentate gyrus. Prog Brain Res 163:639–658PubMedCrossRef
go back to reference Myers CE, Scharfman HE (2011) Pattern separation in the dentate gyrus: A role for the CA3 backprojection. Hippocampus 21:1190–1215PubMedCrossRef Myers CE, Scharfman HE (2011) Pattern separation in the dentate gyrus: A role for the CA3 backprojection. Hippocampus 21:1190–1215PubMedCrossRef
go back to reference Myers CE, Bermudez-Hernandez K, Scharfman HE (2013) The influence of ectopic migration of granule cells into the hilus on dentate gyrus-CA3 function. PLoS ONE 8:e68208PubMedPubMedCentralCrossRef Myers CE, Bermudez-Hernandez K, Scharfman HE (2013) The influence of ectopic migration of granule cells into the hilus on dentate gyrus-CA3 function. PLoS ONE 8:e68208PubMedPubMedCentralCrossRef
go back to reference Nitz D, McNaughton B (2004) Differential modulation of CA1 and dentate gyrus interneurons during exploration of novel environments. J Neurophysiol 91:863–872PubMedCrossRef Nitz D, McNaughton B (2004) Differential modulation of CA1 and dentate gyrus interneurons during exploration of novel environments. J Neurophysiol 91:863–872PubMedCrossRef
go back to reference Nomura T, Fukuda T, Aika Y, Heizmann CW, Emson PC, Kobayashi T, Kosaka T (1997) Distribution of nonprincipal neurons in the rat hippocampus, with special reference to their dorsoventral difference. Brain Res 751:64–80PubMedCrossRef Nomura T, Fukuda T, Aika Y, Heizmann CW, Emson PC, Kobayashi T, Kosaka T (1997) Distribution of nonprincipal neurons in the rat hippocampus, with special reference to their dorsoventral difference. Brain Res 751:64–80PubMedCrossRef
go back to reference Nomura T, Fukuda T, Aika Y, Heizmann CW, Emson PC, Kobayashi T, Kosaka T (1997) Laminar distribution of non-principal neurons in the rat hippocampus, with special reference to their compositional difference among layers. Brain Res 764:197–204PubMedCrossRef Nomura T, Fukuda T, Aika Y, Heizmann CW, Emson PC, Kobayashi T, Kosaka T (1997) Laminar distribution of non-principal neurons in the rat hippocampus, with special reference to their compositional difference among layers. Brain Res 764:197–204PubMedCrossRef
go back to reference O’Reilly RC, McClelland JC (1994) Hippocampal conjunctive encoding, storage, and recall: Avoiding a tradeoff. Hippocampus 4:661–682PubMedCrossRef O’Reilly RC, McClelland JC (1994) Hippocampal conjunctive encoding, storage, and recall: Avoiding a tradeoff. Hippocampus 4:661–682PubMedCrossRef
go back to reference Ratzliff ADH, Howard AL, Santhakumar V, Osapay I, Soltesz I (2004) Rapid deletion of mossy cells does not result in a hyperexcitable dentate gyrus: Implications for epileptogenesis. J Neurosci 24:2259–2269PubMedPubMedCentralCrossRef Ratzliff ADH, Howard AL, Santhakumar V, Osapay I, Soltesz I (2004) Rapid deletion of mossy cells does not result in a hyperexcitable dentate gyrus: Implications for epileptogenesis. J Neurosci 24:2259–2269PubMedPubMedCentralCrossRef
go back to reference Rolls ET (1989) Functions of neuronal networks in the hippocampus and neocortex in memory. In: Byrne JH, Berry WO (eds) Neural Models of Plasticity: Experimental and Theoretical Approaches. Academic Press, San Diego, pp 240–265CrossRef Rolls ET (1989) Functions of neuronal networks in the hippocampus and neocortex in memory. In: Byrne JH, Berry WO (eds) Neural Models of Plasticity: Experimental and Theoretical Approaches. Academic Press, San Diego, pp 240–265CrossRef
go back to reference Rolls ET (1989) The representation and storage of information in neural networks in the primate cerebral cortex and hippocampus. In: Durbin R, Miall C, Mitchison G (eds) The Computing Neuron. Addition-Wesley, Wokingham, pp 125–159 Rolls ET (1989) The representation and storage of information in neural networks in the primate cerebral cortex and hippocampus. In: Durbin R, Miall C, Mitchison G (eds) The Computing Neuron. Addition-Wesley, Wokingham, pp 125–159
go back to reference Rolls ET (1989) Functions of neuronal networks in the hippocampus and cerebral cortex in memory. In: Cotterill R (ed) Models of Brain Function. Cambridge University Press, New York, pp 15–33 Rolls ET (1989) Functions of neuronal networks in the hippocampus and cerebral cortex in memory. In: Cotterill R (ed) Models of Brain Function. Cambridge University Press, New York, pp 15–33
go back to reference Rolls ET (2016) Pattern separation, completion, and categorization in the hippocampus and neocortex. Neurobiol Learn Mem 129:4–28PubMedCrossRef Rolls ET (2016) Pattern separation, completion, and categorization in the hippocampus and neocortex. Neurobiol Learn Mem 129:4–28PubMedCrossRef
go back to reference Santhakumar V, Aradi I, Soltesz I (2005) Role of mossy fiber sprouting and mossy cell loss in hyperexcitability: A network model of the dentate gyrus incorporating cell types and axonal topography. J Neurophysiol 93:437–453PubMedCrossRef Santhakumar V, Aradi I, Soltesz I (2005) Role of mossy fiber sprouting and mossy cell loss in hyperexcitability: A network model of the dentate gyrus incorporating cell types and axonal topography. J Neurophysiol 93:437–453PubMedCrossRef
go back to reference Savanthrapadian S, Meyer T, Elgueta C, Booker SA, Vida I, Bartos M (2014) Synaptic properties of SOM- and CCK-expressing cells in dentate gyrus interneuron networks. J Neurosci 34:8197–8209PubMedPubMedCentralCrossRef Savanthrapadian S, Meyer T, Elgueta C, Booker SA, Vida I, Bartos M (2014) Synaptic properties of SOM- and CCK-expressing cells in dentate gyrus interneuron networks. J Neurosci 34:8197–8209PubMedPubMedCentralCrossRef
go back to reference Scharfman HE (1991) Dentate hilar cells with dendrites in the molecular layer have lower thresholds for synaptic activation by perforant path than granule cells. J Neurosci 11:1660–1673PubMedPubMedCentralCrossRef Scharfman HE (1991) Dentate hilar cells with dendrites in the molecular layer have lower thresholds for synaptic activation by perforant path than granule cells. J Neurosci 11:1660–1673PubMedPubMedCentralCrossRef
go back to reference Scharfman HE (2018) Advances in understanding hilar mossy cells of the dentate gyrus. Cell Tissue Res 373:643–652PubMedCrossRef Scharfman HE (2018) Advances in understanding hilar mossy cells of the dentate gyrus. Cell Tissue Res 373:643–652PubMedCrossRef
go back to reference Scharfman HE, Myers CE (2013) Hilar mossy cells of the dentate gyrus: A historical perspective. Front Neural Circuit 6:106 Scharfman HE, Myers CE (2013) Hilar mossy cells of the dentate gyrus: A historical perspective. Front Neural Circuit 6:106
go back to reference Scharfman HE, Myers CE (2016) Corruption of the dentate gyrus by “dominant’’ granule cells: Implications for dentate gyrus function in health and disease. Neurobiol Learn Mem 129:69–82PubMedCrossRef Scharfman HE, Myers CE (2016) Corruption of the dentate gyrus by “dominant’’ granule cells: Implications for dentate gyrus function in health and disease. Neurobiol Learn Mem 129:69–82PubMedCrossRef
go back to reference Schmidt B, Marrone DF, Markus EJ (2012) Disambiguating the similar: The dentate gyrus and pattern separation. Behav Brain Res 226:56–65PubMedCrossRef Schmidt B, Marrone DF, Markus EJ (2012) Disambiguating the similar: The dentate gyrus and pattern separation. Behav Brain Res 226:56–65PubMedCrossRef
go back to reference Schmidt-Hieber C, Bischofberger J (2010) Fast sodium channel gating supports localized and efficient axonal action potential initiation. J Neurosci 30:10233–10242PubMedPubMedCentralCrossRef Schmidt-Hieber C, Bischofberger J (2010) Fast sodium channel gating supports localized and efficient axonal action potential initiation. J Neurosci 30:10233–10242PubMedPubMedCentralCrossRef
go back to reference Schmidt-Hieber C, Jonas P, Bischofberger J (2007) Subthreshold dendritic signal processing and coincidence detection in dentate gyrus granule cells. J Neurosci 27:8430–8441PubMedPubMedCentralCrossRef Schmidt-Hieber C, Jonas P, Bischofberger J (2007) Subthreshold dendritic signal processing and coincidence detection in dentate gyrus granule cells. J Neurosci 27:8430–8441PubMedPubMedCentralCrossRef
go back to reference Shimazaki H, Shinomoto S (2010) Kernel bandwidth optimization in spike rate estimation. J Comput Neurosci 29:171–182PubMedCrossRef Shimazaki H, Shinomoto S (2010) Kernel bandwidth optimization in spike rate estimation. J Comput Neurosci 29:171–182PubMedCrossRef
go back to reference Sloviter RS, Lømo T (2012) Updating the lamellar hypothesis of hippocampal organization. Front Neural Circuit 6:102 Sloviter RS, Lømo T (2012) Updating the lamellar hypothesis of hippocampal organization. Front Neural Circuit 6:102
go back to reference Squire L (1987) Memory and Brain. Oxford University Press, New York Squire L (1987) Memory and Brain. Oxford University Press, New York
go back to reference Su L, Chang CJ, Lynch N (2019) Spike-based winner-take-all computation: Fundamental limits and order-optimal circuits. Neural Comput 31:2523–2561PubMedCrossRef Su L, Chang CJ, Lynch N (2019) Spike-based winner-take-all computation: Fundamental limits and order-optimal circuits. Neural Comput 31:2523–2561PubMedCrossRef
go back to reference Treves A, Rolls ET (1991) What determines the capacity of autoassociative memories in the brain? Network 2:371–397CrossRef Treves A, Rolls ET (1991) What determines the capacity of autoassociative memories in the brain? Network 2:371–397CrossRef
go back to reference Treves A, Rolls ET (1992) Computational constraints suggest the need for two distinct input systems to the hippocampal CA3 network. Hippocampus 2:189–199PubMedCrossRef Treves A, Rolls ET (1992) Computational constraints suggest the need for two distinct input systems to the hippocampal CA3 network. Hippocampus 2:189–199PubMedCrossRef
go back to reference Treves A, Rolls ET (1994) Computational analysis of the role of the hippocampus in memory. Hippocampus 4:374–391PubMedCrossRef Treves A, Rolls ET (1994) Computational analysis of the role of the hippocampus in memory. Hippocampus 4:374–391PubMedCrossRef
go back to reference Wang XJ (2010) Neurophysiological and computational principles of fscortical rhythms in cognition. Physiol Rev 90:1195–1268PubMedCrossRef Wang XJ (2010) Neurophysiological and computational principles of fscortical rhythms in cognition. Physiol Rev 90:1195–1268PubMedCrossRef
go back to reference Wang Y, Zhang X, Xin Q, Hung W, Florman J, Huo J, Xu T, Xie Y, Alkema MJ, Zhen M, Wen Q (2020) Flexible motor sequence generation during stereotyped escape responses. eLife 9:e56942PubMedPubMedCentralCrossRef Wang Y, Zhang X, Xin Q, Hung W, Florman J, Huo J, Xu T, Xie Y, Alkema MJ, Zhen M, Wen Q (2020) Flexible motor sequence generation during stereotyped escape responses. eLife 9:e56942PubMedPubMedCentralCrossRef
go back to reference West MJ, Slomianka L, Gundersen HJ (1991) Unbiased stereological estimation of the total number of neurons in the subdivisions of the rat hippocampus using the optical fractionator. Anat Rec 231:482–497PubMedCrossRef West MJ, Slomianka L, Gundersen HJ (1991) Unbiased stereological estimation of the total number of neurons in the subdivisions of the rat hippocampus using the optical fractionator. Anat Rec 231:482–497PubMedCrossRef
go back to reference Willshaw D, Buckingham J (1990) An assessment of Marr’s theory of the hippocampus as a temporary memory store. Phil Trans R Soc Lond B 329:205–215CrossRef Willshaw D, Buckingham J (1990) An assessment of Marr’s theory of the hippocampus as a temporary memory store. Phil Trans R Soc Lond B 329:205–215CrossRef
go back to reference Yim MY, Hanuschkin A, Wolfart J (2015) Intrinsic rescaling of granule cells restores pattern separation ability of a dentate gyrus network model during epileptic hyperexcitability. Hippocampus 25:297–308PubMedCrossRef Yim MY, Hanuschkin A, Wolfart J (2015) Intrinsic rescaling of granule cells restores pattern separation ability of a dentate gyrus network model during epileptic hyperexcitability. Hippocampus 25:297–308PubMedCrossRef
Metadata
Title
Disynaptic effect of hilar cells on pattern separation in a spiking neural network of hippocampal dentate gyrus
Authors
Sang-Yoon Kim
Woochang Lim
Publication date
24-03-2022
Publisher
Springer Netherlands
Published in
Cognitive Neurodynamics / Issue 6/2022
Print ISSN: 1871-4080
Electronic ISSN: 1871-4099
DOI
https://doi.org/10.1007/s11571-022-09797-z

Other articles of this Issue 6/2022

Cognitive Neurodynamics 6/2022 Go to the issue